首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
北疆地区积雪深度的克里格内插估计   总被引:11,自引:4,他引:11  
以新疆北部 81°~ 94.6°E ,41°~ 48.2°N区域为试验区 ,利用北疆地区 1981~ 1990年 1月气象站的雪深观测数据 ,采用克里格空间内插方法 ,估计试验区的雪深分布 .结果表明 ,内插结果与试验区内积雪深度的分布趋势基本一致 ,但在局部地区误差较大 .并对误差产生的原因和进一步优化的途径进行了探讨 .  相似文献   

2.
胡列群  李帅  梁凤超 《冰川冻土》2013,35(4):793-800
利用新疆91个气象台站1960-2011年的观测资料, 对南北疆及天山山区冬春年(10月-翌年5月)的积雪日数、最大积雪深度、积雪初始、终止日期等因子进行了统计分析, 并通过Kringing插值计算了新疆区域平均最大积雪深度的空间分布.结果表明: 新疆冬春季积雪主要分布在天山以北, 厚度可达30 cm以上, 天山以南积雪比较浅薄, 大部分在10 cm以下;50 a来, 南北疆及天山山区的积雪深度均呈小幅增长(天山山区增幅最大), 积雪日数呈略微降低趋势, 积雪初始、终止日期无明显变化. 天山山区的积雪变化与北疆有较高的相关性, 它们积雪深度和积雪日数的相关系数分别达0.708和0.614, 南疆积雪变化与它们几乎没有相关性;积雪深度与冬春年降水量的变化均有很好的一致性, 尤其在北疆,二者相关系数高达0.702, 但与平均温度呈低的负相关;积雪日数与冬春年降水量变化没有明显相关关系, 但均与气温呈较好的负相关, 在北疆二者的相关系数达-0.742.  相似文献   

3.
新疆北部积雪开始和结束时间的特征分析   总被引:1,自引:4,他引:1  
基于1961-2006年全疆32个测雪站的逐日积雪深度资料,分析了北疆区域积雪开始和结束时间的气候分布和时间变化特征.结果表明:积雪开始和结束时间存在明显的区域差异,这种差异主要是由地形高度变化引起的.积雪开始时间以12a和6a左右的周期振荡为主,积雪结束时间则以5a和8a左右的周期振荡为主.在不同海拔,积雪开始时间均呈偏晚趋势,积雪结束时间在较低海拔地区(≤1000m)呈偏晚趋势,而在较高海拔地区(1001~2000m)呈偏早趋势.积雪开始时间相对结束时间的趋势变化更为显著.积雪开始和结束时间和海拔关系密切,积雪开始时间随海拔升高而提前,积雪结束时间则随海拔升高而推迟.  相似文献   

4.
新疆北部地区季节性积雪密度变化特征分析   总被引:3,自引:1,他引:3  
选取新疆北部地区季节性积雪期的定点站和典型区域,应用北疆20个气象站点观测资料和使用便携式测雪仪(Snow Fork),在不同地域、不同雪层和不同时间进行观测与测量,并且在积雪稳定期中的一次降雪过程对新雪密度变化过程中影响它的诸多因子进行观测,对新疆北部地区冬季季节性积雪密度变化特征进行的观测和分析.结果表明:雪面辐射热量和雪层内温度梯度对积雪密度起主要作用,变化主要是通过雪层内深霜和粗粒雪层的温度减小而实现的;在隆冬期全层积雪密度最大的为深霜层,入春2月下旬回暖期以后,由于雪层含水率的增加,季节性积雪密度最大层则为粒雪层.  相似文献   

5.
中国近50a积雪日数与最大积雪深度的时空变化规律   总被引:3,自引:7,他引:3  
王春学  李栋梁 《冰川冻土》2012,34(2):247-256
通过REOF和非参数Mann-Kendall趋势检验法,以1958/1959-2007/2008年度中国557个气象台站的积雪观测资料为基础,对中国积雪日数与最大积雪深度的时空演变规律进行分析.结果表明:东北、新疆北部和青藏高原中东部为中国积雪日数和最大积雪深度的3个大值区;近50a来,春、秋季中国积雪日数和最大积雪深度在整体上呈现缓慢减少的趋势,冬季积雪日数和最大积雪深度呈现增加的趋势.气温是影响积雪产生和维持的重要因素.  相似文献   

6.
王鑫  王宁练  王俊杰  申保收 《冰川冻土》2021,43(5):1354-1364
积雪中记录的痕量元素含量,能很好地评估当地大气污染状况。利用电感耦合等离子体质谱仪(ICP-MS),对2018年1月和3月采自新疆北部的天山北坡、伊犁河谷、塔城地区和阿勒泰地区的积雪样品进行了16种痕量元素测试。结果表明:北疆地区积雪中痕量元素含量的平均值在0.06 ng·g-1(Cd)~1 481.1 ng·g-1(Al)之间。时间分布上,消融期多数痕量元素浓度低于积累期、稳定期;Pb、Cr等元素消融期含量高于其他时期,可能与外源输入有关。空间分布上,塔城地区和天山北坡的多数痕量元素含量高出伊犁河谷和阿勒泰地区1~3倍。与其他地区雪冰中痕量元素含量对比,发现新疆北部高出青藏高原北部1~3倍,与受人类活动影响较大的天山乌鲁木齐河源1号冰川相应痕量元素浓度接近,揭示了新疆北部积雪中痕量元素较高的浓度特征。元素富集系数表明,Fe、Be等元素主要来自地壳粉尘,Pb、Cd、Zn、As等元素呈显著富集(EFc>10),受人类排放活动主导。结合后向气团轨迹分析,塔城地区的痕量元素可能受到哈萨克斯坦的影响,阿勒泰地区的痕量元素可能受到中亚、阿尔泰山南缘等地的影响,天山北坡与伊犁河谷主要受新疆本地气团的影响。  相似文献   

7.
在全球变化背景下,雪面雨发生频次增加,致灾风险加大,认识雪面雨时空变化特征对于防洪减灾具有重要意义。基于我国新疆北部地区42个国家气象站1960—2015年逐日气温、降水、雪深、天气现象等气象观测数据,制定降水类型、地面状态、雪深等共同判定雪面雨事件的参数化方案,进而分析新疆北部地区雪面雨日数时空变化特征及其与气温、海拔的关系。结果表明:近56 a来新疆北部地区雪面雨日数以0.3 d·(10a)-1的速率呈缓慢增加趋势;空间分布上,新疆北部地区雪面雨主要集中于塔城北部、伊犁河谷、乌鲁木齐河源地区,其中塔城裕民县最多,年平均雪面雨日数12.2 d;相关分析显示雪面雨日数及雪面雨量均与海拔呈显著正相关。该研究有望提升对新疆干旱区雪面雨事件这一诱发雨雪混合洪水重要现象的科学认识,为新疆地区致灾洪水过程分析以及洪水监测预警提供参考。  相似文献   

8.
选取新疆89个气象站1961—2017年逐日积雪深度观测资料, 分析近60 a新疆冬季最大积雪深度及积雪日数的时空变化特征。结果表明: 新疆冬季最大积雪深度以天山为界, 天山以北多于南部, 北疆北部和伊犁河谷最大达60 ~ 100 cm, 天山山区及天山北坡30 ~ 60 cm, 南疆大部地区不足20 cm; 新疆北部最大雪深多出现在1996年以后, 也是新疆气候由暖干转为暖湿的阶段。近60 a新疆区域尤其是北疆、 天山山区冬季最大积雪深度呈显著增加趋势, 南疆略有增加; 89个气象站中87.6%呈增加趋势, 20个显著增加, 主要分布在天山以北地区。分析不同积雪深度出现的日数, 新疆区域、 北疆地区、 天山山区≤10 cm积雪约占积雪总日数的48% ~ 58%, 10 ~ 20 cm积雪占24% ~ 32%, 20 ~ 30 cm积雪占12% ~ 15%, >30 cm积雪约占5%左右; 南疆地区以≤5 cm积雪为主。新疆区域、 北疆地区以及天山山区积雪日数总体呈减少趋势, 其中≤10 cm积雪日数减少, 尤其北疆显著减少, >20 cm积雪日数显著增加, 南疆变化不明显; 空间变化趋势分布基本与区域变化一致。  相似文献   

9.
新疆乌鲁木齐地区积雪深度演变规律及对气候变化的响应   总被引:2,自引:0,他引:2  
陈春艳  李毅  李奇航 《冰川冻土》2015,37(3):587-594
积雪深度D是水文模型和气象预测中的重要参数之一.基于新疆乌鲁木齐站1961-2013年积雪深度D及气象资料,分析了积雪起止日期、持续期特征和D的时间变化规律,并对比了不同模型对于D过程变化的适配效果.此外,对最大积雪深度Dmax进行了趋势检验,并简要分析了气象要素对D和Dmax的影响.结果表明:乌鲁木齐积雪的持续期在73~207 d范围变化,平均持续141 d,积雪开始日期和终止日均呈推迟趋势,积雪持续期呈增加趋势,但其趋势均不显著.可将积雪年内的D变化类型分为多峰缓变型、右偏型、尖峰型以及平峰型4种,分别用不同模型适配后发现整体上模拟效果较好的是Gaussian函数.在1961-2013年53 a期间的Dmax不具有自相似结构,但有显著上升趋势.气温尤其是最低气温与的D相关性最好,冷季降水总量与Dmax有的正相关关系,表明气温和同时期降水与积雪变化关系密切.春季迅速升温过程及一定的累积积雪深度可能令融雪型洪水爆发,其对应的年型为尖峰型和平峰型.  相似文献   

10.
基于CMIP6气候模式的新疆积雪深度时空格局研究   总被引:1,自引:0,他引:1  
张庆杰  陶辉  苏布达  窦挺峰  姜彤 《冰川冻土》2021,43(5):1435-1445
积雪深度的变化对地表水热平衡起着至关重要的作用。选用了国际耦合模式比较计划第六阶段(CMIP6)中目前情景比较齐全的五个全球气候模式,通过对比新疆地区1979—2014年积雪深度长时间序列数据集,评估了气候模式在新疆地区模拟积雪深度的模拟能力,接着预估了未来不同SSPs-RCPs情景下新疆地区在2021—2040年(近期)、2041—2060年(中期)、2081—2100年(末期)相对于基准期(1995—2014年)的积雪深度变化。气温和降水对积雪深度变化有着重要的影响,因此还分析了新疆地区到21世纪末期气温和降水的变化趋势。结果表明:订正后的气候模式模拟的积雪深度数据与观测数据的相关系数均达到0.8以上,其中1月至3月与观测数据的结果更为吻合。气候模式基本上能够反映积雪深度年内变化的基本特征,气候模式模拟的积雪深度空间分布和观测数据具有相似的特征。气温和降水在未来不同情景下均会波动上升,其中气温的增幅相对比较明显,达0.43 ℃·(10a)-1,而降水的增幅为0.63 mm·(10a)-1,新疆未来的气候总体上呈现出变暖变湿的趋势。新疆地区的平均积雪深度在未来不同时期相对基准期均呈增加的趋势。SSP1-1.9情景下,21世纪近期、中期和末期北部大部分地区的积雪深度将会有所增加;SSP1-2.6情景下,北部阿尔泰山地区的积雪深度在21世纪近期有所减小,但中期和末期将会有所增加;SSP2-4.5情景下,21世纪不同时期东部地区的积雪深度将会有所增加,北部和中部大部分地区在不同时期积雪深度将会变小;SSP3-7.0情景下,21世纪不同时期北部和西南地区的积雪深度将会普遍变小,东部地区的积雪深度将普遍增加;SSP4-3.4和SSP4-6.0情景下,21世纪不同时期西南昆仑山地区的积雪深度将会普遍变小,东部地区的积雪深度将普遍增加;SSP5-8.5情景下,北部阿尔泰山地区和东部地区的积雪深度将普遍增加。  相似文献   

11.
IPCC AR4多模式对中国地区未来40 a雪水当量的预估   总被引:1,自引:2,他引:1  
王芝兰  王澄海 《冰川冻土》2012,34(6):1273-1283
通过评估参加CMIP3计划的22 个GCM在20 世纪气候情景(20C3M)下中国地区雪水当量模拟能力的检验, 挑选出模拟能力较好的模式, 通过多模式集合方法, 对SEARS的模拟结果进行集合, 预估未来40 a雪水当量在中国地区的时空变化特征.结果表明: 在A1B情景下和B1情景下, 中国地区未来40 a雪水当量年际变化均呈减少趋势; 在A1B和B1情景下, 青藏高原地区、 华北平原地区、 长江中游地区及东北北部地区的雪水当量均呈减少趋势, 其中在昆仑山西段帕米尔高原地区减少最为显著, 其次为喜马拉雅山区和巴颜喀拉山东段地区.在中国北部的内蒙古高原地区、 云贵高原等部分地区的雪水当量则有所增加.总体上, A1B情景下比B1情景下雪水当量的减少更为明显. 2021-2050年雪水当量在青藏高原减少显著; 对于季节变化来说, 在秋冬季积雪的累积期, 雪水当量可能增加, 尤其在10-12月, 而在积雪消融的春夏季(2-6月)有所减少.  相似文献   

12.
利用北疆地区2007/2008-2009/2010年度积雪季(12月至次年2月)的AMSR-E降轨19 GHz与37 GHz波段的水平极化亮温数据, 结合北疆地区45个气象台站的实测雪深数据, 建立了北疆地区基于AMSR-E亮度温度数据的雪深反演模型, 并对模型的精度进行评价. 结果显示: 雪深在3~10 cm时, 模型反演的雪深值负向平均误差为-5.1 cm, RMSE值为6.1 cm; 雪深在11~30 cm时, 模型反演雪深值的平均误差仅为2.6 cm, RMSE、 正向平均误差、 绝对平均误差均较小; 雪深大于30 cm时, 模型反演的各项误差较大. 用合成方法反演北疆地区2006/2007-2010/2011年度5个积雪季的平均雪深分布和最大雪深分布, 结果显示北疆地区积雪主要分布于北部阿尔泰山和南部天山一带, 其中阿勒泰地区所占比重最大, 中部的准噶尔盆地腹地、 克拉玛依地区雪层较浅.  相似文献   

13.
利用位于天山西部的中国科学院天山积雪与雪崩研究站1967-2000年近33 a来的观测记录, 检验了天山西部中山带季节性积雪、冬季降水、冬季平均气温的变化趋势. 结果表明: 季节性积雪的长期变化呈增加趋势, 近33 a来年平均增加1.43%; 冬季气温和降水的变化趋势也是增加的, 其中冬季降水每年平均增加0.12%, 而冬季气温近30 a来升高了0.8 ℃. 对气温时间序列的一次线性倾向估计的倾向值为0.02, 气温变化表现出稳定的升温趋势, 最大熵谱分析表明气温的变化存在2.1 a、 3.6 a、 10.7 a的变化周期. 对多年气温季节的变化研究表明, 升温的季节主要是冬季, 而夏季升温不明显;最大熵谱分析表明降水变化存在2.1 a、 6.4 a、 10.7 a的周期变化, 降水量的变化没有表现出很强的趋势性特点;逐年最大积雪深度在波动中成逐年增加的趋势, 积雪日数和最大积雪深度之间密切相关, 33 a来的积雪日数是增加的. 通过对相关因子和影响因子分析表明, 季节性积雪与冬季气温之间存在着弱的负相关关系, 与冬季降水呈显著的正相关关系.  相似文献   

14.
40余年来中国地区季节性积雪的空间分布及年际变化特征   总被引:11,自引:8,他引:11  
王澄海  王芝兰  崔洋 《冰川冻土》2009,31(2):301-310
利用全国700余个气象站的地面积雪观测资料,分析了中国地区季节性积雪年际的时空变化特征.结果表明:新疆北部,东北-内蒙古地区和青藏高原西南和南部地区为我国季节性积雪的3个高值区,也是积雪年际变化变化大的地区,也即为中国积雪年际异常变化的敏感区.综合积雪深度和积雪日数的变化趋势,可大致分为3种变化类型:1)增加和减小同步,主要在新疆天山以北、青藏高原东部地区、内蒙古高原中东部到大兴安岭以西的地区,减少区人体在内蒙古西部、黄土高原和长江中下游地区;2)积雪深度增加但积雪日数减少,主要在东北平原东部的部分地区,长江上游的部分地区;3)积雪深度减小而积雪口数增加,主要位于青藏高原中部的部分地区.中国地区积雪总体上呈现出平缓的增长趋势,积雪深度和积雪日数的年代际变化趋势在20世纪60年代呈现为稍有增加;70年代有所下降;80年代又增加;90年代又有略有增加的趋势.  相似文献   

15.
45a来塔里木河流域气温、降水变化及其对积雪面积的影响   总被引:4,自引:2,他引:4  
对塔里木河流域19个台站45 a(1958-2002年)的气温、降水序列进行非参数检验,查明其变化趋势及特征,在此基础上,对近20 a(1982-2001年)流域的积雪面积(SCA,%)变化进行趋势与相关分析.结果表明:流域的气温和降水均在20世纪80年代中期发生了阶段式的跳跃增长,气温和降水增加的主要季节分别为冬季和夏季.流域总体的积雪面积呈缓慢增加态势,其中北区和西区增加较为稳定,而南区相对不稳定.在垂直方向上,海拔<2 500 m的区域积雪面积表现缓慢增加,而海拔≥2 500 m的区域则减少.相比较,低海拔区域更易受降水影响,而高海拔区域更易受气温影响.海拔2 500~5 000 m的高度带是对气候变化较为敏感的区域.20世纪90年代与80年代相比,降雪和融雪的速度都更快.积雪与冷季降水呈正相关,但与冷季气温没有明显的相关关系.  相似文献   

16.
CMIP3模式对未来50a欧亚大陆雪水当量的预估   总被引:4,自引:1,他引:4  
马丽娟  罗勇  秦大河 《冰川冻土》2011,33(4):707-720
为研究预估未来50a欧亚大陆雪水当量,基于遥感数据,用误差百分率、空间相关和误差标准差等统计方法,评估了14个CMIP3模式在20C3M的雪水当量产品,诊断各模式对欧亚大陆雪水当量的模拟能力,在此基础上对模拟效果较好的10个模式产品进行多模式集合,分析了A2和B1情景下2002—2060年欧亚大陆雪水当量的变化.结果表...  相似文献   

17.
天山季节性积雪稳定期雪密度与积累速率的观测分析   总被引:6,自引:0,他引:6  
陆恒  魏文寿  刘明哲  高培  韩茜 《冰川冻土》2011,33(2):374-380
利用Snow Fork雪特性分析仪测量的天山积雪雪崩站2009年2月21-26日及2010年1月26-31日雪特性数据,分析了季节性积雪稳定期内积雪垂直剖面密度的变化特征及其随降雪沉积时间和雪层深度的变化规律.结果表明:季节性积雪稳定期内,积雪剖面密度中部最大,表层和底层密度较低;新雪层密度随时间的推移增加速率逐渐增大...  相似文献   

18.
穆振侠  姜卉芳 《冰川冻土》2012,34(6):1284-1292
作为气候变化产物及气候变化敏感指示器的积雪, 对干旱区的区域社会经济的发展、 生态环境的改善起着极其重要的作用. 为能够更好的指导环境变化下积雪水资源的合理开发利用, 基于2001-2010年MODIS积雪数据、 2005年MODIS土地利用/覆被变化(LUCC)数据及阿克苏气象站气象数据, 对昆马力克河流域积雪消融规律对气候变化的响应进行分析. 结果表明: 研究区气温自1997年后快速升高, 尤其以冬季和春节较明显; 年际、 年内及时段积雪消融规律对气候变化有较好的响应关系; 不同覆被下除农用地所在区域积雪覆盖率与气温变化服从线性变化外, 其他覆被下均服从抛物线型变化. 积雪覆盖率对气温变化的敏感程度有一定的差异, 以林地所在区域最敏感, 变化较快, 其次依次为灌丛、 草地和稳定雪/冰所在区域.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号