首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mineral and thermal waters are defined according to Polish geological and mining law. Their occurrence in particular hydrogeological provinces of the country is characterized. Besides their use in balneotherapeutics, their role as a heat carrier and source of chemical raw materials is stressed. Topics mentioned requiring further research are: the origin of saline formation waters and the origin of CO2 in carbonated waters.  相似文献   

2.
The study presents composition data of 87 surface water samples from high alpine catchments of the Zermatt area (Swiss Alps). The investigated area covers 170 km2. It was found that the surface runoff acquires the dissolved solids mostly by reaction of precipitation water with the minerals of the bedrock. Total dissolved solids (TDS) vary from 6 to 268 mg L?1. All collected water shows a clear chemical signature of the bedrock mineralogy. The contribution of atmospheric input is restricted to small amounts of ammonium nitrate and sodium chloride. NH4 is a transient component and has not been detected in the runoff. Evaporation is not a significant mechanism for TDS increase in the Zermatt area. The chemical composition of the three main types of water can be related to the mineralogy of the dominant bedrock in the catchments. Specifically, Ca-HCO3 (CC) waters develop from metamorphic mafic rocks and from carbonate-bearing schists. Mg-HCO3 water originates from serpentinites and peridotites. Ca-SO4 (CS) waters derive from continental basement rocks such as pyrite-rich granite and gneiss containing oligoclase or andesine. The collected data suggest that, together with reaction time, modal sulfide primarily controls and limits TDS of the waters by providing sulfuric acid for calcite (CC waters) and silicate (CS waters) dissolution. If calcite is present in the bedrock, its dissolution neutralizes the acid produced by sulphide weathering and buffers pH to near neutral to weakly alkaline conditions. If calcite is absent, the process produces low-pH waters in gneiss and granite catchments. The type of bedrock and its mineral assemblage can be recognized in water leaving very small catchments of some km2 area. The large variety of water with a characteristic chemical signature is an impressive consequence of the richly diverse geology and the different rock inventory of the local catchments in the Zermatt area.  相似文献   

3.
Two groups of perennial springs are observed in the Canadian High Arctic at Expedition Fjord on Axel Heiberg Island at Colour Peak and Gypsum Hill. Saline discharge (∼1.3–2.5 molal NaCl) produces a variety of calcite (travertine) and gypsum-rich precipitates. Saturation index calculations of the spring waters at Colour Peak suggest CO2 degassing from the waters causes calcite precipitation. Gypsum precipitation dominates at Gypsum Hill, where spring waters have lower alkalinity and higher SO4 concentrations. Mineral accumulations form both channel and rimstone pool morphologies as a result of varying slope conditions. At Colour Peak, confined flow in steep slope areas develop massive structures in contrast to more friable, porous accumulations in areas where waters fan out on shallower slopes; these morphological variations lead to corresponding varying apparent rates of mineral precipitation. Mineral precipitation at Gypsum Hill is far less notable as a result of lower discharge rates and annual degradation by icing formation. Microscopic observations and geochemical analyses of the channel precipitates at Colour Peak reveal alternating light (calcite spar) and dark (anhedral microcrystalline calcite combined with organic matter and non-carbonate minerals) laminae. Rimstone pools forming in lower sections of spring discharge are composed of accumulations of large euhedral calcite crystals interbedded with allochthonous inputs. High concentration of dissolved solids is responsible for slow travertine precipitation rates, which occurs during winter. This precipitation is further retarded during summer months by the introduction of crystal growth inhibitors such as Fe3+ and deposition of organic matter and soil sediments.  相似文献   

4.
This work reports new hydrochemical data on the two types of cold high p CO2 groundwaters from the Mukhen deposit (Khabarovsk district). The first type is classed with HCO3-Ca-Mg waters with a relatively low TDS (up to 1.7 g/l) and high concentrations of Fe2+, Mn2+, Ba2+, and SiO2. The second type is of HCO3-Na composition with high TDS (up to 14 g/l) and elevated Li+, B, Sr2+, Br?, and I?. New oxygen (δ18O) and hydrogen (δD) isotopic data on the waters and carbon (δ13C) isotopic data on the gas phase, together with a detailed geological and hydrogeological analysis of the study area, allowed us to decipher the origin of both the mineral waters. Based on the tritium content (3H) in the ground and surface waters of the area, the duration of the mineral water circulation was estimated. It was established that the both types of groundwaters were formed during interaction of meteoric water with bedrock under active influence of CO2, however HCO3-Na groundwaters have longer residence time than HCO3-Ca-Mg groundwaters.  相似文献   

5.
《Applied Geochemistry》1993,8(2):153-160
A geochemical study of the high-PCO2 waters in Logudoro, northern Sardinia, was carried out starting from regional hydrogeochemical prospecting for geothermal energy, based on the major dissolved components and some minor elements. This preliminary investigation led to the identification of five different lithologies marking the different aquifers. The high-PCO2 waters can be divided into the less saline (TDS < 1g/l) with high tritium unit (T.U.) values and the more saline ones (TDS= 1–3.5 g/l) with T.U. values close to zero. The water-rock interaction process affecting the major components is shown to be the result of interaction between CO2-rich waters and aluminosilicates; the process takes place at different degrees depending on the depth at which CO2 interacts with different aquifers while migrating upward from the mantle. Consideration of the SO4/Cl and F/Cl ratios in the solution allowed the deep ciruits of S. Martino and Abbarghente in the Oligo-Miocene volcanic rocks and S. Lucia in the carbonate-schistose-granitic basement of the Goceano Mountains to be located.  相似文献   

6.
Uttarakhand geothermal area, located in the central belt of the Himalayan geothermal province, is one of the important high temperature geothermal fields in India. In this study, the chemical characteristics of the thermal waters are investigated to identify the main geochemical processes affecting the composition of thermal waters during its ascent toward the surface as well as to determine the subsurface temperature of the feeding reservoir. The thermal waters are mainly Ca–Mg–HCO3 type with moderate silica and TDS concentrations. Mineral saturation states calculated from PHREEQC geochemical code indicate that thermal waters are supersaturated with respect to calcite, dolomite, aragonite, chalcedony, quartz (SI > 0), and undersaturated with respect to gypsum, anhydrite, and amorphous silica (SI < 0). XRD study of the spring deposit samples fairly corroborates the predicted mineral saturation state of the thermal waters. Stable isotopes (δ18O, δ2H) data confirm the meteoric origin of the thermal waters with no oxygen-18 shift. The mixing phenomenon between thermal water with shallow ground water is substantiated using tritium (3H) and chemical data. The extent of dilution is quantified using tritium content of thermal springs and non-thermal waters. Classical geothermometers, mixing model, and multicomponent fluid geothermometry modeling (GeoT) have been applied to estimate the subsurface reservoir temperature. Among different classical geothermometers, only quartz geothermometer provide somewhat reliable estimation (96–140 °C) of the reservoir temperature. GeoT modeling results suggest that thermal waters have attained simultaneous equilibrium with respect to minerals like calcite, quartz, chalcedony, brucite, tridymite, cristobalite, talc, at the temperature 130 ± 5 °C which is in good agreement with the result obtained from the mixing model.  相似文献   

7.
The mineral water deposits in Kiseljak are located in the central Dinarids, Bosnia and Herzegovina, in the southwestern edge of Sarajevo–Zenica basin that was formed in the zone of Busova?a fault. Busova?a fault reaches deep into the Earth’s crust and is characterised by the presence of mineral and thermomineral water enriched with CO2 and CO2 springs (mofetes) in the direction of Ilid?a–Kiseljak–Busova?a. Deposits are constructed of layers of Palaeozoic to Cretaceous age. Primary aquifer of mineral waters is Permian clastites and evaporites and secondary Anisian carbonates. Mineral water and CO2 are of different origin. The water is of atmospheric origin. Due to slow circulation, water descends in the primary aquifer where it becomes enriched with CO2 and minerals. Due to high pressure in the primary aquifer mineral water ascends along Busova?a fault, mounts into the secondary aquifer and rises at spring sources. Water is a mixture of two or more waters of different mineralization. Mixing of water occurs in the zone of secondary aquifer even at greater depths without the influence of contemporary climatic factors. Intensive water mixing is indicated by the high ratio of Ca/Sr, Na/Cl and Ca/SO4 and the mixing diagram. CO2 is thermometamorphic, arising from the catalytic activity of SiO2 on carbonates in the deeper layers of the Earth’s crust, where quartz porphyry broke through Palaeozoic formations.  相似文献   

8.
Strontium isotopes and other geochemical signatures are used to determine the relationships between CO2-rich thermal (Chaves: 76 °C) and mineral (Vilarelho da Raia, Vidago and Pedras Salgadas: 17 °C) waters discharging along one of the major NNE–SSW trending faults in the northern part of mainland Portugal. The regional geology consists of Hercynian granites (syn-tectonic-310 Ma and post-tectonic-290 Ma) intruding Silurian metasediments (quartzites, phyllites and carbonaceous slates). Thermal and mineral waters have 87Sr/86Sr isotopic ratios between 0.716713 and 0.728035. 87Sr/86Sr vs. 1/Sr define three end-members (Vilarelho da Raia/Chaves, Vidago and Pedras Salgadas thermal and mineral waters) trending from rainfall composition towards that of the CO2-rich thermal and mineral waters, indicating different underground flow paths. Local granitic rocks have 87Sr/86Sr ratios of 0.735697–0.789683. There is no indication that equilibrium was reached between the CO2-rich thermal and mineral waters and the granitic rocks. The mean 87Sr/86Sr ratio of the thermal and mineral waters (0.722419) is similar to the Sr isotopic ratios of the plagioclases of the granitic rocks (0.71261–0.72087). The spatial distribution of Sr isotope and geochemical signatures of waters and the host rocks suggests that the thermal and mineral waters circulate in similar but not the same hydrogeological system. Results from this study could be used to evaluate the applicability of this isotope approach in other hydrogeologic investigations.  相似文献   

9.
The reported study contributes to research on earthquake prediction. Between 2007 and 2009, changes were observed in two geothermal and mineral springs located in Eskipazar (~3–5 km to the north of the North Anatolian Fault Zone) in Turkey, in relation to small-magnitude earthquakes. During pre-seismic and post-seismic activities, variations were observed in the hydrogeological parameters of the spring waters. Temperature increases of 0.4–1°C were measured in one of the springs prior to three different earthquakes. There was a slight increase in the spring discharge with respect to the first earthquake, which occurred closest to the spring. This led to a reduction in electrical conductivity (EC), total dissolved solids (TDS), Ca, HCO3, δ13C, Al, Mn, and Fe concentrations in the spring water, whereas tritium and Se values increased. Several days before the third earthquake, which occurred at a shallower depth, a decrease was observed in the discharge, which led to a reduction in tritium, δ13C and Si concentrations. These variations could be explained by changes in the mixing ratio of waters of different genesis, depending on changes in permeability, pore pressure, and flow paths of the aquifer due to regional stress changes.  相似文献   

10.
The Jharia coalfield is the most important and active minig region; it experiences groundwater inflow and affects groundwater levels in overlying aquifers, and it provides the basis for a conceptual model of the hydrogeological impacts of coal mining. The several sandstone aquifers of the overburden are separated by aquitards that limit vertical hydraulic connection, but the inflow responds to seasonal events and seems to be linked to shallow groundwater behavior. The mine drainage behavior suggests a hydraulic connection between the mine and the shallower groundwater system. The greatest declines are directly above the panels, with an immediate response to coal mining. The inflow is localized by natural and induced fracture zones and is mostly into recent workings. The groundwater behavior is controlled by hydraulic property changes caused by mine-induced fracturing. The hydrological and chemical qualities of the shallow groundwater regime in 13 mining collieries in Mukunda Block have been investigated. Water samples collected from 30 shallow monitoring dug wells were chosen for the study. Rainfall, runoff, and infiltration rates have been calculated in the area. The water-quality plottings were used to interpret the distribution of individual chemical parameters and in predicting the water quality. The underground mine water has been classified as: (1) unconfined groundwater in the calcareous siltstone and sandstone—its composition is Na, Ca, SO4 and Na-MgHCO3 with moderate total dissolved solids (TDS) 200–1480 ppm; (2) the deep groundwater originating from the coal seams and associated sediments in the near-surface environments—this is a Na-HCO3 water with higher TDS; and (3) spoil dump waters are essentially Na-HCO3 with high TDS. This article presents some hydrologic results and conclusions relating to the hydrogeological and environmental impacts of the coal mining in the Jharia coalfield.  相似文献   

11.
This paper reviews the geochemical, isotopic (2H, 18O, 13C, 3H and 14C) and numerical modelling approaches to evaluate possible geological sources of the high pH (11.5)/Na–Cl/Ca–OH mineral waters from the Cabeço de Vide region (Central-Portugal). Water–rock interaction studies have greatly contributed to a conceptual hydrogeological circulation model of the Cabeço de Vide mineral waters, which was corroborated by numerical modelling approaches. The local shallow groundwaters belong to the Mg–HCO3 type, and are derived by interaction with the local serpentinized rocks. At depth, these type waters evolve into the high pH/Na–Cl/Ca–OH mineral waters of Cabeço de Vide spas, issuing from the intrusive contact between mafic/ultramafic rocks and an older carbonate sequence. The Cabeço de Vide mineral waters are supersaturated with respect to serpentine indicating that they may cause serpentinization. Magnesium silicate phases (brucite and serpentine) seem to control Mg concentrations in Cabeço de Vide mineral waters. Similar δ2H and δ18O suggest a common meteoric origin and that the Mg–HCO3 type waters have evolved towards Cabeço de Vide mineral waters. The reaction path simulations show that the progressive evolution of the Ca–HCO3 to Mg–HCO3 waters can be attributed to the interaction of meteoric waters with serpentinites. The sequential dissolution at CO2 (g) closed system conditions leads to the precipitation of calcite, magnesite, amorphous silica, chrysotile and brucite, indicating that the waters would be responsible for the serpentinization of fresh ultramafic rocks (dunites) present at depth. The apparent age of Cabeço de Vide mineral waters was determined as 2790 ± 40 a BP, on the basis of 14C and 13C values, which is in agreement with the 3H concentrations being below the detection limit.  相似文献   

12.
Mineral and thermal waters are a special kind of ground-water, distinguished by specific chemical or physical properties such as higher mineralization, concentration of certain constituents, dissolved gas, radioactivity, or temperature. Hydrologically, they are a part of ground-water system. Mineral or thermal waters are usually connegted with specific and unique geological and tetuunic structure.. The classical territory of mineral and thermal waters is Europe, where these waters have been used for medicinal purposes since ancient times. The development of spas and increased demands for mineral water for spa operation necessitated increased knowledge of spring structures and the development of optimal balneotechnical works. These problems are discussed on the examples of the Karlovy Vary Spa (Karlsbad) and Jàchymov Spa (St. Jachimstha) in W Bohemia. The location of mineral springs in the Karlovy Vary Spa, the largest spa in Czechoslovakia, in a highly urbanized area required a thorough investigation and unique methods for capturing thermal water at a greater depth to provide a steady supply of thermal water and to protect the springs against pollution from the surface. The Jachymov radioactive thermal springs, which were accidentally discovered in a deep, subsurface uranium mine, present a unique problem of protecting the stability of spring's regime in a mining environment.  相似文献   

13.
《Applied Geochemistry》2000,15(4):475-492
Between 1968 and 1983, the North pit at the Getchell Mine, Humboldt County, NV, filled with water to form a lake. In 1983, water quality data were collected with the following results: As concentrations of 0.29 to 0.59 mg/L, pH of 7.1 to 7.9, SO4 concentrations of 1490 to 1640 mg/L, and TDS of 2394 to 2500 mg/L. Using geochemical modeling techniques presented here, pit lake waters have been theoretically allowed to react for 8.5 a, the approximate time that the North pit had been completely full by 1983. Modeling results predict pH of 7.9 to 8.2, SO4 concentrations of 1503 to 1644 mg/L, TDS of 2054 to 2366 mg/L, and As concentrations ranging from 0.57 in the hypolimnion to 96 mg/L in the epilimnion. In the epilimnion, model results do not match observed As concentrations, suggesting that mechanisms, such as precipitation of arsenate salts or adsorption to mineral surfaces, may control As levels in an actual pit lake system. Adsorption to Fe oxyhydroxide surfaces is questioned by the authors because of the low Fe content in the Getchell system, but adsorption to Al(OH)3 (gibbsite) and clay mineral surfaces may be important in controlling natural As concentrations.  相似文献   

14.
Thermal waters at the Godavari valley geothermal field are located in the Khammam district of the Telangana state, India. The study area consists of several thermal water manifestations having temperature in the range 36–76 °C scattered over an area of ~35 km2. The thermal waters are Na–HCO3 type with moderate silica and TDS concentrations. In the present study, detailed geochemical (major and trace elements) and isotope hydrological investigations are carried out to understand the hydrogeochemical evolution of these thermal waters. Correlation analysis and principal component analysis (PCA) are performed to classify the thermal waters and to identify the different geochemical processes controlling the thermal water geochemistry. From correlation matrix, it is seen that TDS and EC of the thermal springs are mainly controlled by HCO3 and Na ions. In PCA, thermal waters are grouped into two distinct clusters. One cluster represents thermal waters from deeper aquifer and other one from shallow aquifer. Lithium and boron concentrations are found to be similar followed by rubidium and caesium concentrations. Different ternary plots reveal rock–water interaction to be the dominant mechanism for controlling trace element concentrations. Stable isotopes (δ18O, δ2H) data indicate the meteoric origin of the thermal waters with no appreciable oxygen-18 shift. The low tritium values of the samples originating from deeper aquifer reveal the long residence time (>50 years) of the recharging waters. XRD results of the drill core samples show that quartz constitutes the major mineral phase, whereas kaolinite, dolomite, microcline, calcite, mica, etc. are present as minor constituents. Quartz geothermometer suggests a reservoir temperature of 100 ± 20 °C which is in good agreement with the values obtained from K–Mg and Mg-corrected K–Mg–Ca geothermometers.  相似文献   

15.
Stable isotopes of hydrogen and oxygen were determined in 45 samples of water (27 samples of oil-associated waters, 17 samples of mineral waters used by spas, 1 sample of surface river water) from the Central Carpathian Synclinorium, covering a stratigraphic range of flysch sediments from Upper Cretaceous to Oligocene. Moreover, oxygen isotope compositions of authigenic calcite (vein and cement) from core samples of four boreholes were made to evaluate isotopic equilibrium between waters and diagenetic carbonates as a function of temperature. The saline and brackish waters (TDS from1 g/l to 48.9 g/l) considered here, generally belong to four hydrogeochemical classes: Na-Cl, Cl-HCO3-Na, HCO3-Cl-Na and HCO3-Na. Their isotopic composition causes them to fall to the right of Global Meteoric Water Line (GMWL) showing enrichment in 18O and 2H. On the other hand, relative to Standard Mean Ocean Water (SMOW) they are depleted in 2H and both depleted and enriched in 18O. The observed isotopic composition can be explained by the three-component mixing of surface water, diagenetically modified sea water (kind of connate water) and metamorphic water. The mixing is accompanied by an exchange of oxygen isotopes between water and carbonate cements causes 18O enrichment of interstitial waters. The contribution of isotopic exchange between water and clay minerals in shales was evaluated only theoretically basing of the literature.  相似文献   

16.
Water samples from precipitation, glacier melt, snow melt, glacial lake, streams and karst springs were collected across SE of Kashmir Valley, to understand the hydrogeochemical processes governing the evolution of the water in a natural and non-industrial area of western Himalayas. The time series data on solute chemistry suggest that the hydrochemical processes controlling the chemistry of spring waters is more complex than the surface water. This is attributed to more time available for infiltrating water to interact with the diverse host lithology. Total dissolved solids (TDS), in general, increases with decrease in altitude. However, high TDS of some streams at higher altitudes and low TDS of some springs at lower altitudes indicated contribution of high TDS waters from glacial lakes and low TDS waters from streams, respectively. The results show that some karst springs are recharged by surface water; Achabalnag by the Bringi stream and Andernag and Martandnag by the Liddar stream. Calcite dissolution, dedolomitization and silicate weathering were found to be the main processes controlling the chemistry of the spring waters and calcite dissolution as the dominant process in controlling the chemistry of the surface waters. The spring waters were undersaturated with respect to calcite and dolomite in most of the seasons except in November, which is attributed to the replenishment of the CO2 by recharging waters during most of the seasons.  相似文献   

17.
This study focuses on the hydrochemical characteristics of 47 water samples collected from thermal and cold springs that emerge from the Hammam Righa geothermal field, located in north-central Algeria. The aquifer that feeds these springs is mainly situated in the deeply fractured Jurassic limestone and dolomite of the Zaccar Mount. Measured discharge temperatures of the cold waters range from 16.0 to 26.5 °C and the hot waters from 32.1 to 68.2 °C. All waters exhibited a near-neutral pH of 6.0–7.6. The thermal waters had a high total dissolved solids (TDS) content of up to 2527 mg/l, while the TDS for cold waters was 659.0–852.0 mg/l. Chemical analyses suggest that two main types of water exist: hot waters in the upflow area of the Ca–Na–SO4 type (Hammam Righa) and cold waters in the recharge zone of the Ca–Na–HCO3 type (Zaccar Mount). Reservoir temperatures were estimated using silica geothermometers and fluid/mineral equilibria at 78, 92, and 95 °C for HR4, HR2, and HR1, respectively. Stable isotopic analyses of the δ18O and δD composition of the waters suggest that the thermal waters of Hammam Righa are of meteoric origin. We conclude that meteoric recharge infiltrates through the fractured dolomitic limestones of the Zaccar Mount and is conductively heated at a depth of 2.1–2.2 km. The hot waters then interact at depth with Triassic evaporites located in the hydrothermal conduit (fault), giving rise to the Ca–Na–SO4 water type. As they ascend to the surface, the thermal waters mix with shallower Mg-rich groundwater, resulting in waters that plot in the immature water field in the Na–K–Mg diagram. The mixing trend between cold groundwaters from the recharge zone area (Zaccar Mount) and hot waters in the upflow area (Hammam Righa) is apparent via a chloride-enthalpy diagram that shows a mixing ratio of 22.6 < R < 29.2 %. We summarize these results with a geothermal conceptual model of the Hammam Righa geothermal field.  相似文献   

18.
An investigation of the thermal waters in the Ústí nad Labem area in the northeastern part of the Eger Rift has been carried out, with the principal objective of determining their origin. Waters from geothermal reservoirs in the aquifers of the Bohemian Cretaceous Basin (BCB) from depths of 240 to 616 m are exploited here. For comparison, thermal waters of the adjacent Teplice Spa area were also incorporated into the study. Results based on water chemistry and isotopes indicate mixing of groundwater from aquifers of the BCB with groundwater derived from underlying crystalline rocks of the Erzgebirge Mts. Unlike thermal waters in Dě?ín, which are of Ca–HCO3 type, there are two types of thermal waters in Ústí nad Labem, Na–HCO3–Cl–SO4 type with high TDS values and Na–Ca–HCO3–SO4 type with low TDS values. Carbon isotope data, speciation calculations, and inverse geochemical modeling suggest a significant input of endogenous CO2 at Ústí nad Labem in the case of high TDS groundwaters. Besides CO2 input, both silicate dissolution and cation exchange coupled with dissolution of carbonates may explain the origin of high TDS thermal waters equally well. This is a consequence of similar δ13C and 14C values in endogenous CO2 and carbonates (both sources have 14C of 0 pmc, endogenous CO2 δ13C around −3‰, carbonates in the range from −5‰ to +3‰ V-PDB). The source of Cl seems to be relict brine formed in Tertiary lakes, which infiltrated into the deep rift zone and is being flushed out. The difference between high and low TDS groundwaters in Ústí nad Labem is caused by location of the high mineralization groundwater wells in CO2 emanation centers linked to channel-like conduits. This results in high dissolution rates of minerals and in different δ13C(DIC) and 14C(DIC) fingerprints. A combined δ34S and δ18O study of dissolved SO4 indicates multiple SO4 sources, involving SO4 from relict brines and oxidation of H2S. The study clearly demonstrates potential problems encountered at sites with multiple sources of C, where several evolutionary groundwater scenarios are possible.  相似文献   

19.
《Applied Geochemistry》2000,15(9):1345-1367
Rare Earth Elements (REEs), and Sr and Nd isotope distributions, have been studied in mineralized waters from the Massif Central (France). The CO2-rich springs are characterized by a neutral pH (6–7) associated with total dissolved solids (TDS) from 1 to 7 g l−1. The waters result from the mixing of very mineralized water pools, thought to have equilibrated at a temperature of around 200°C with superficial waters. These two mineral water pools evidenced by Sr isotopes and dissolved REEs could reflect 2 different stages of water–rock interaction and an equilibrium with different mineral assemblages.The concentrations of individual dissolved REEs and total dissolved REEs (ΣREE), in the mineral waters examined, vary over several orders of magnitude but are not dependent on the main parameters of the waters (TDS, T°C, pH, Total Organic C). The dissolved REE concentrations presented as upper continental crust normalized patterns show HREE enrichment in most of the samples. The time evolution of REE patterns does not show significant fluctuations except in 1 borehole, located in the Limagne d’Allier area, which was sampled on 16 occasions over an 18 month period. Ten samples are HREE-enriched, whereas 6 samples show flat patterns.The aqueous speciation of REEs shows that CO2−3 complexes dominate (>80%) over the free metal, F, SO2−4 and HCO3 complexes. The detailed speciation demonstrates that the fractionation of REEs (i.e. the HREE enrichment) in CO2-rich and pH neutral fluids is due essentially to the predominance of the CO2−3 complexes.The Sr isotopic composition of the mineral waters in the Massif Central shows different mixing processes; in the Cézallier area at least 3 end-member water types exist. The most dilute end-member is likely to originate as poorly mineralized waters with minimal groundwater circulation. Two other mineralized end-members are identified, although the link between the geographical location of spring outflow and the mixing proportion between the 2 end-members is not systematic. The range in ϵNd(0) for mineralized waters in the Massif Central correlates well with that of the known parent rocks except for 4 springs. One way to explain the ϵNd(0) in these instances is a contribution from drainage of volcanic rocks. The isotopic systematics help to constrain the hydrogeological models for this area.  相似文献   

20.
The Black Warrior Basin of the southeastern United States hosts one of the world’s most prolific and long-lived coalbed methane plays, and the wealth of experience in this basin provides insight into the relationships among basin hydrology, production performance, and environmental issues. Along the southeast margin of the basin, meteoric recharge of reservoir coal beds exposed in an upturned fold limb exerts a strong control on water chemistry, reservoir pressure, and production performance. Fresh-water plumes containing Na–HCO3 waters with low TDS content extend from the structurally upturned basin margin into the interior of the basin. Northwest of the plumes, coal beds contain Na–Cl waters with moderate to high-TDS content. Carbon isotope data from produced gas and mineral cements suggest that the fresh-water plumes have been the site of significant bacterial activity and that the coalbed methane reservoirs contain a mixture of thermogenic and late-stage biogenic gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号