首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Multi‐temporal ERS‐1 SAR data acquired over a large agricultural region in West Bengal was used to classify kharif crops like rice, jute and sugarcane. Rice crop grown under lowland management practice showed a temporal characteristic. The dynamic range of backscatter was highest for this crop in temporal SAR data. This was used to classify rice using temporal SAR data. Such temporal character was not observed for the other study crops, which may be due to the difference in cultivation practice and crop calendar. Significant increase in backscatter from the ploughed fields was used to derive information on onset and duration of land preparations. Synergistic use of optical remote sensing data and SAR data increased the separability of rice crop from homesteads and permanent vegetation classes.  相似文献   

2.
ABSTRACT

Globally, countries have experienced substantial increases in farmland abandonment. Although vegetation phenology is a key factor for the classification of land use, understanding of the phenological change of abandoned farmland is lacking. Using harmonic analysis of NDVI and NDWI extracted from Landsat imagery, this study investigates the distinctive phenological characteristics of abandoned farmland, which contrasts with that of three other agricultural types (paddy, agricultural field, orchard) in the study site of Gwangyang City in Jeollanam Province, South Korea. The results suggest that abandoned farmland has higher overall greenness coverage and overall water content in vegetation than the other uses. In terms of both indices, abandoned farmlands changed with relatively less fluctuation than those of other uses, suggesting the existence of constant and unmanaged vegetation from ecological succession, which differs from crop fields that undergo cultivation procedures. The significant harmonic components differed among agricultural types and vegetation indices. In paddy, NDVI was explained with multiple, higher-order harmonic components, while in other types only first-order components met the 5% statistical significance level. With NDWI, land types were more clearly discernible, because of the different cultivation procedures involving water: wet-field method (paddy), dryland farming (orchard, agricultural field), and no cultivation (abandoned farmland). The analysis confirms that harmonic analysis could be useful in discerning abandoned farmland among areas of active agricultural use and shows that the statistical significance of harmonic terms can be employed as indicators of different agricultural types. The observed pattern of the geographic distribution of abandoned farmland has policy implications for the promotion of sustainable reuse of marginal farmland.  相似文献   

3.
全球农情遥感速报系统20年   总被引:2,自引:0,他引:2  
吴炳方  张淼  曾红伟  闫娜娜  张鑫  邢强  常胜 《遥感学报》2019,23(6):1053-1063
面向国家粮食安全的重大战略需求,1998年中国科学院建立了"中国农情遥感速报系统"(CropWatch),持续运行20年后,现已发展成为"全球农情遥感速报系统"(CropWatch)。本文重点论述了2013年建立参与式全球农情遥感监测云平台(CropWatch-Cloud)以来,所采用的农情监测体系、可定制的农情监测云平台理念以及CropWatch-Cloud在国内外的应用推广情况,介绍了技术方法与农情信息服务方式的创新与进步带来的国际影响力的提升。系统总结了全球农情遥感速报系统发展的农情监测指标、农情预警能力、作物长势综合监测方法以及众源数据支持的作物面积监测方法,论文进一步阐述了CropWatch未来的发展方向,借助众源地理信息、大数据技术等的发展,打通从地块—村—镇—县—市—省—国家—全球的体系化全链条监测,满足从农户到政府决策部门对农情信息的差异化需求。  相似文献   

4.
Improving crop area and/or crop yields in agricultural regions is one of the foremost scientific challenges for the next decades. This is especially true in irrigated areas because sustainable intensification of irrigated crop production is virtually the sole means to enhance food supply and contribute to meeting food demands of a growing population. Yet, irrigated crop production worldwide is suffering from soil degradation and salinity, reduced soil fertility, and water scarcity rendering the performance of irrigation schemes often below potential. On the other hand, the scope for improving irrigated agricultural productivity remains obscure also due to the lack of spatial data on agricultural production (e.g. crop acreage and yield). To fill this gap, satellite earth observations and a replicable methodology were used to estimate crop yields at the field level for the period 2010/2014 in the Fergana Valley, Central Asia, to understand the response of agricultural productivity to factors related to the irrigation and drainage infrastructure and environment. The results showed that cropping pattern, i.e. the presence or absence of multi-annual crop rotations, and spatial diversity of crops had the most persistent effects on crop yields across observation years suggesting the need for introducing sustainable cropping systems. On the other hand, areas with a lower crop diversity or abundance of crop rotation tended to have lower crop yields, with differences of partly more than one t/ha yield. It is argued that factors related to the infrastructure, for example, the distance of farms to the next settlement or the density of roads, had a persistent effect on crop yield dynamics over time. The improvement potential of cotton and wheat yields were estimated at 5%, compared to crop yields of farms in the direct vicinity of settlements or roads. In this study it is highlighted how remotely sensed estimates of crop production in combination with geospatial technologies provide a unique perspective that, when combined with field surveys, can support planners to identify management priorities for improving regional production and/or reducing environmental impacts.  相似文献   

5.
This paper describes a framework for an image processing procedure for operational agricultural crop area estimation. This operational framework has been conceived within the development of an Advanced Agricultural Information System (AAIS) for the “Regione del Veneto “ (RdV ‐ Veneto Region) in northeastern Italy. The objective of this program is to develop the ability to generating timely and accurate area estimates and production information for four major agricultural crops: soybeans, sugar beets, corn, and small grains. AAIS uses state of the art methods in remote sensing and geographic information systems (GIS) technology and integrates a variety of data types including satellite imagery. This paper describes the methodology developed for image and ancillary data processing for the production of crop area statistics. Using a combination of standard unsupervised classification and GIS operations that incorporate knowledge about the agricultural system, a “sequential masking” classification procedure was derived. This sequential masking procedure yielded crop classification accuracies that at the study site level range between 76% and 99% depending on the crop under study. We believe that classification accuracies will improve with full system implementation, along with the incorporation of new and/or improved thematic information and operational experience using AAIS‐based estimation.  相似文献   

6.
Developing countries are vulnerable to tropical cyclones due to climatic variability and the frequency and magnitude of some extreme weather and disaster events is likely to increase. Cities and towns situated along the coastal belt of Visakhapatnam district experienced severe damage because of Hudhub cyclone (12 October 2014). The main objective of this research was to identify and quantify the damage to agriculture and vegetation caused by Hudhud cyclone. In this study, landsat-8 satellite data-sets acquired before and after the cyclone have been used; image processing techniques have been carried out to assess the changes of pre- and post-cyclone condition. Economic loss of agriculture crops has been assessed using crop production loss per hectare and total economic loss for agriculture crops in the study area was calculated. Classification results and land use land cover change analysis show that 13.25% of agriculture-Kharif and 31.1% of vegetation was damaged. Crop Biomass was estimated with aid of crop conversion factor for pre- and post-cyclone conditions. Total ‘Above ground biomass’ of the agriculture crop area was estimated at 31.57 t/ha and total loss of biomass was assessed to be 4.2 t/ha. Carbon stock was found to be varying from 0.3 to 8.3 t.C/ha in specific agriculture crops. From the results, it was concluded that Hudhud has done significant damage to the rural and urban areas of Visakhapatnam. The outcome of this study can be used by decision-makers for the release of post disaster relief fund to affected areas.  相似文献   

7.
Governments compile their agricultural statistics in tabular form by administrative area, which gives no clue to the exact locations where specific crops are actually grown. Such data are poorly suited for early warning and assessment of crop production. 10-Daily satellite image time series of Andalucia, Spain, acquired since 1998 by the SPOT Vegetation Instrument in combination with reported crop area statistics were used to produce the required crop maps. Firstly, the 10-daily (1998–2006) 1-km resolution SPOT-Vegetation NDVI-images were used to stratify the study area in 45 map units through an iterative unsupervised classification process. Each unit represents an NDVI-profile showing changes in vegetation greenness over time which is assumed to relate to the types of land cover and land use present. Secondly, the areas of NDVI-units and the reported cropped areas by municipality were used to disaggregate the crop statistics. Adjusted R-squares were 98.8% for rainfed wheat, 97.5% for rainfed sunflower, and 76.5% for barley. Relating statistical data on areas cropped by municipality with the NDVI-based unit map showed that the selected crops were significantly related to specific NDVI-based map units. Other NDVI-profiles did not relate to the studied crops and represented other types of land use or land cover. The results were validated by using primary field data. These data were collected by the Spanish government from 2001 to 2005 through grid sampling within agricultural areas; each grid (block) contains three 700 m × 700 m segments. The validation showed 68%, 31% and 23% variability explained (adjusted R-squares) between the three produced maps and the thousands of segment data. Mainly variability within the delineated NDVI-units caused relatively low values; the units are internally heterogeneous. Variability between units is properly captured. The maps must accordingly be considered “small scale maps”. These maps can be used to monitor crop performance of specific cropped areas because of using hypertemporal images. Early warning thus becomes more location and crop specific because of using hypertemporal remote sensing.  相似文献   

8.
This study presents a Geographic Information System (GIS)-based geostatistical and visualization analysis of crop suitability in two blocks of sub-mountain area of Punjab under diversification programme. It combines the limitation approach of land capability classification, productivity potential evaluation procedure and crop suitability evaluation framework of FAO. Two blocks from the sub mountain Siwalik region of Punjab viz., Mahalpur and Garhshankar were selected. This study evaluates the capabilities of the study area for traditional crops like wheat, paddy and maize, and recently introduced crops like sugarcane, sunflower, pea, rapeseed-mustard, potatoes and kinnow for agricultural diversification. The suitability of the crops has been worked out at the village level. About 35–40 per cent of total area mostly in Siwallik hills is not fit for growing any type of crop. Sandy texture, uneven topography, moderately steep slopes and excessive drainage are responsible for unsuitability of this area. The GIS based suitability analysis for traditional crops as well as for new crops, under diversification of agriculture has been undertaken. The geostatistical analysis points towards suitability of relatively large areas for new crops like sunflower, potato, pea (green) and sugarcane. Forty three and 14 per cent of total area has been found highly suitable and suitable respectively for growing green pea - a cash crop. Thirty three per cent of total area is suitable for growing kinnow fruit. The success of diversification programme is subject to logical government policy in terms of providing cold storage, food processing facility and marketing infrastructure.  相似文献   

9.

Background  

Changes in agricultural practices-notably changes in crop varieties, application of fertilizer and manure, rotation and tillage practices-influence how much and at what rate carbon is stored in, or released from, soils. Quantification of the impacts of land use on carbon stocks in sub-Saharan Africa is challenging because of the spatial heterogeneity of soil, climate, management conditions, and due to the lack of data on soil carbon pools of most common agroecosystems. This paper provides data on soil carbon stocks that were collected at 10 sites in southeastern Nigeria to characterize the impact of soil management practices.  相似文献   

10.
Human diets strongly rely on wheat, maize, rice and soybean; research on the potential crop productivity of these four main crops could provide the basis for increasing global crop yields. The evaluation model of realistic potential crop productivity based on remote sensing and agro-ecological zones was proposed in this study to provide reliable reference data for world food security. The statistical data on these four main crops yields were obtained from the FAO. The model was used to investigate the potential production of four staple crops in the world. The distributions of the realistic potential productivity of four staple crops (winter wheat, maize, rice and soybean) were produced. In the main producing countries of the four staple crops, statistical analysis was conducted on the realistic potential productivity (RPP) of the four staple crops, the highest productivity (HP) during the period 1983–2011 and the gap between RPP and HP.  相似文献   

11.
针对依靠布设固定监测站的方式收集噪声信息需耗费大量人力、物力和财力,且其所采集数据仅能覆盖有限范围的问题,该文依照群智感知的思路,利用志愿者的智能手机作为信息采集终端,收集中国矿业大学(北京)校园内的噪声监测数据,使用克里金插值法生成噪声地图,在对校园进行功能区划分的基础上,分析校园环境噪声的空间分布差异和各功能区内噪声的时间变化规律。实验结果表明,该文所提方法能根据校园内人群的智能手机采集的数据,快速获取环境噪声的时空分布模式,进而推断时空差异的产生原因。  相似文献   

12.
Accurate and timely information on the distribution of crop types is vital to agricultural management, ecosystem services valuation and food security assessment. Synthetic Aperture Radar (SAR) systems have become increasingly popular in the field of crop monitoring and classification. However, the potential of time-series polarimetric SAR data has not been explored extensively, with several open scientific questions (e.g. the optimal combination of image dates for crop classification) that need to be answered. In this research, the usefulness of full year (both 2011 and 2014) L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data in crop classification was fully investigated over an agricultural region with a heterogeneous distribution of crop categories. In total, 11 crop classes including tree crops (almond and walnut), forage crops (grass, alfalfa, hay, and clover), a spring crop (winter wheat), and summer crops (corn, sunflower, tomato, and pepper), were discriminated using the Random Forest (RF) algorithm. The SAR input variables included raw linear polarization channels as well as polarimetric parameters derived from Cloude-Pottier (CP) and Freeman-Durden (FD) decompositions. Results showed clearly that the polarimetric parameters yielded much higher classification accuracies than linear polarizations. The combined use of all variables (linear polarizations and polarimetric parameters) produced the maximum overall accuracy of 90.50 % and 84.93 % for 2011 and 2014, respectively, with a significant increase of approximately 8 percentage points compared with linear polarizations alone. The variable importance provided by the RF illustrated that the polarimetric parameters had a far greater influence than linear polarizations, with the CP parameters being much more important than the FD parameters. The most important acquisitions were the images dated during the peak biomass stage (July and August) when the differences in structural characteristics between most crops were the largest. At the same time, the images in spring (April and May) and autumn (October) also contributed to the crop classification since they respectively provided unique information for discriminating fruit crops (almond and walnut) as well as summer crops (corn, sunflower, and tomato). As a result, the combined use of only four acquisitions (dated May, July, August, and October for 2011 and April, June, August, and October for 2014) was adequate to achieve a nearly-optimal overall accuracy. In light of the promising classification accuracies demonstrated in this research, it becomes increasingly viable to provide accurate and up-to-date crops inventories over large areas based solely on multitemporal polarimetric SAR.  相似文献   

13.
The aim of this paper is to assess the accuracy of an object-oriented classification of polarimetric Synthetic Aperture Radar (PolSAR) data to map and monitor crops using 19 RADARSAT-2 fine beam polarimetric (FQ) images of an agricultural area in North-eastern Ontario, Canada. Polarimetric images and field data were acquired during the 2011 and 2012 growing seasons. The classification and field data collection focused on the main crop types grown in the region, which include: wheat, oat, soybean, canola and forage. The polarimetric parameters were extracted with PolSAR analysis using both the Cloude–Pottier and Freeman–Durden decompositions. The object-oriented classification, with a single date of PolSAR data, was able to classify all five crop types with an accuracy of 95% and Kappa of 0.93; a 6% improvement in comparison with linear-polarization only classification. However, the time of acquisition is crucial. The larger biomass crops of canola and soybean were most accurately mapped, whereas the identification of oat and wheat were more variable. The multi-temporal data using the Cloude–Pottier decomposition parameters provided the best classification accuracy compared to the linear polarizations and the Freeman–Durden decomposition parameters. In general, the object-oriented classifications were able to accurately map crop types by reducing the noise inherent in the SAR data. Furthermore, using the crop classification maps we were able to monitor crop growth stage based on a trend analysis of the radar response. Based on field data from canola crops, there was a strong relationship between the phenological growth stage based on the BBCH scale, and the HV backscatter and entropy.  相似文献   

14.
There is a growing interest in monitoring the gross primary productivity (GPP) of crops due mostly to their carbon sequestration potential. Both within- and between-field variability are important components of crop GPP monitoring, particularly for the estimation of carbon budgets. In this letter, we present a new technique for daytime GPP estimation in maize based on the close and consistent relationship between GPP and crop chlorophyll content, and entirely on remotely sensed data. A recently proposed chlorophyll index (CI), which involves green and near-infrared spectral bands, was used to retrieve daytime GPP from Landsat Enhanced Thematic Mapper Plus (ETM+) data. Because of its high spatial resolution (i.e., 30 30 m/pixel), this satellite system is particularly appropriate for detecting not only between- but also within-field GPP variability during the growing season. The CI obtained using atmospherically corrected Landsat ETM+ data was found to be linearly related with daytime maize GPP: root mean squared error of less than 1.58 in a GPP range of 1.88 to 23.1 ; therefore, it constitutes an accurate surrogate measure for GPP estimation. For comparison purposes, other vegetation indices were also tested. These results open new possibilities for analyzing the spatiotemporal variation of the GPP of crops using the extensive archive of Landsat imagery acquired since the early 1980s.  相似文献   

15.
基于时间序列叶面积指数稀疏表示的作物种植区域提取   总被引:3,自引:0,他引:3  
王鹏新  荀兰  李俐  王蕾  孔庆玲 《遥感学报》2019,23(5):959-970
以华北平原黄河以北地区为研究区域,以时间序列叶面积指数LAI(Leaf Area Index)傅里叶变换的谐波特征作为不同作物识别的数据源,利用稀疏表示的分类方法识别2007年—2016年冬小麦、春玉米、夏玉米等主要农作物种植区域。首先利用上包络线Savitzky-Golay滤波分别对2007年—2016年的时间序列MODIS LAI曲线进行重构,进而对重构的年时间序列LAI进行傅里叶变换,以0—5级谐波振幅、1—5级谐波相位作为作物识别的依据,基于各类地物的训练样本,通过在线字典学习算法构建稀疏表示方法的判别字典,对每个待测样本利用正交匹配追踪算法求解稀疏系数,从而计算对应于各类地物的重构误差,根据最小重构误差判定待测样本的作物类型,并对作物识别结果的位置精度进行验证。结果表明,2007年—2016年作物识别的总体精度为77.97%,Kappa系数为0.74,表明本文提出的方法可以用于研究区域主要作物种植区域的提取。  相似文献   

16.
辽宁省全国第一次地理国情普查的基础是地表覆盖和地理国情要素的采集工作,同时也是开展统计分析的前提。本文以辽宁省朝阳市基于遥感影像的地理国情数据采集工作为例,对地理国情普查中地表覆盖数据和地理国情要素的内容及指标进行数据采集研究。采集的基础指标包括范围、位置、属性、面积等,利用清华山维EPS2010软件进行数据采集、数据建库、数据检查和时点更新等工作。详细阐述了在辽宁省朝阳市地理国情普查中的工作流程,总结出一套稳定、高效、可靠、因地制宜的数据采集方法,为开展常态化地理国(省)情监测奠定基础。  相似文献   

17.
The Regione del Veneto (Italy) is cooperating with the University of California, Santa Barbara and other researchers in Italy and the U.S.A. to develop a system of econometric crop production modeling. Five crops are to be included in this project: small grains (wheat and barley), corn, sugar beets, soybeans, orchards and vineyards. A critical part of the crop yield modeling process is the identification of crops using multispectral satellite data. This paper explores two strategies to improve crop classification accuracies: (1) use of ancillary data stored in digital format and (2) use of multitemporal data. Ancillary information stored on digital files were used in this research to remove (mask) non‐agricultural areas from satellite image data. Comparison between the classification of masked and unmasked images showed that improvement ranged from 3% to 26% depending on crop type. The multidate classification was performed by compiling an image of transformed spectral bands and three TM‐5 bands. The transformed bands were TM band 4 over TM band 3. Based on the work conducted in this study it is clear that crop type determination from satellite imagery is possible for small field agricultural areas such as those found in Italy.  相似文献   

18.
Land suitability analysis is prerequisite for sustainable agriculture and it plays a pivotal role in the niche based agricultural planning in mountain regions. In this paper different parameters viz. climatic (precipitation and temperature), topographic (elevation), soil type and land cover/land use have been used in order to perform land suitability evaluation for cereals food-grain crops in Himachal Pradesh using Geographic Information System (GIS). The suitability analysis was performed by digital processing of geo-referenced data (elevation, climate, soil and landcover) and calculating potential production areas by combining different types of geographical data through decision rules framed for each crop in ArcView spatial analyst. Suitable areas have been delineated for cereal crops in the form of land suitability maps. In comparison to the actual area under cereal crops, the possibility of further expansion under each cereal crop was determined. These discriminated areas appear suitable for growing these crops and can be harnessed efficiently for achieving long term sustainability and food security.  相似文献   

19.
Monitoring phenological change in agricultural land improves our understanding of the adaptation of crops to a warmer climate. Winter wheat–maize and winter wheat–cotton double-cropping are practised in most agricultural areas in the North China Plain. A curve-fitting method is presented to derive winter wheat phenology from SPOT-VEGETATION S10 normalized difference vegetation index (NDVI) data products. The method uses a double-Gaussian model to extract two phenological metrics, the start of season (SOS) and the time of maximum NDVI (MAXT). The results are compared with phenological records at local agrometeorological stations. The SOS and MAXT have close agreement with in situ observations of the jointing date and milk-in-kernel date respectively. The phenological metrics detected show spatial variations that are consistent with known phenological characteristics. This study indicates that time-series analysis with satellite data could be an effective tool for monitoring the phenology of crops and its spatial distribution in a large agricultural region.  相似文献   

20.
Spatial and temporal information on plant and soil conditions is needed urgently for monitoring of crop productivity. Remote sensing has been considered as an effective means for crop growth monitoring due to its timely updating and complete coverage. In this paper, we explored the potential of L-band fully-polarimetric Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) data for crop monitoring and classification. The study site was located in the Sacramento Valley, in California where the cropping system is relatively diverse. Full season polarimetric signatures, as well as scattering mechanisms, for several crops, including almond, walnut, alfalfa, winter wheat, corn, sunflower, and tomato, were analyzed with linear polarizations (HH, HV, and VV) and polarimetric decomposition (Cloude–Pottier and Freeman–Durden) parameters, respectively. The separability amongst crop types was assessed across a full calendar year based on both linear polarizations and decomposition parameters. The unique structure-related polarimetric signature of each crop was provided by multitemporal UAVSAR data with a fine temporal resolution. Permanent tree crops (almond and walnut) and alfalfa demonstrated stable radar backscattering values across the growing season, whereas winter wheat and summer crops (corn, sunflower, and tomato) presented drastically different patterns, with rapid increase from the emergence stage to the peak biomass stage, followed by a significant decrease during the senescence stage. In general, the polarimetric signature was heterogeneous during June and October, while homogeneous during March-to-May and July-to-August. The scattering mechanisms depend heavily upon crop type and phenological stage. The primary scattering mechanism for tree crops was volume scattering (>40%), while surface scattering (>40%) dominated for alfalfa and winter wheat, although double-bounce scattering (>30%) was notable for alfalfa during March-to-September. Surface scattering was also dominant (>40%) for summer crops across the growing season except for sunflower and tomato during June and corn during July-to-October when volume scattering (>40%) was the primary scattering mechanism. Crops were better discriminated with decomposition parameters than with linear polarizations, and the greatest separability occurred during the peak biomass stage (July-August). All crop types were completely separable from the others when simultaneously using UAVSAR data spanning the whole growing season. The results demonstrate the feasibility of L-band SAR for crop monitoring and classification, without the need for optical data, and should serve as a guideline for future research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号