首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对遥感影像面向对象分析技术存在的“分类过程中专家分析不同带来的分类结果不一致”问题,提出地理本体驱动的“地理实体描述-模型构建-影像对象分类”解译框架。首先,利用地理本体建立影像对象客观特征与地理专家知识的联系,实现对地理实体的描述与表达;其次,利用知识工程方法以及计算机可操作的形式化本体语言构建影像对象特征、分类器的本体模型,形成语义网络模型;最后,联合语义网络模型与专家规则实现影像对象的语义分类。地表覆盖分类实验结果表明,该方法不仅能够得到反映真实地理对象的遥感影像分类结果,而且能够掌握地理实体的语义信息,实现地表覆盖分类知识的共享与语义网络模型的复用,为遥感影像面向对象分析提供了一种全局性的解译分析框架及其方法。  相似文献   

2.
The amount of scientific literature on (Geographic) Object-based Image Analysis – GEOBIA has been and still is sharply increasing. These approaches to analysing imagery have antecedents in earlier research on image segmentation and use GIS-like spatial analysis within classification and feature extraction approaches. This article investigates these development and its implications and asks whether or not this is a new paradigm in remote sensing and Geographic Information Science (GIScience). We first discuss several limitations of prevailing per-pixel methods when applied to high resolution images. Then we explore the paradigm concept developed by Kuhn (1962) and discuss whether GEOBIA can be regarded as a paradigm according to this definition. We crystallize core concepts of GEOBIA, including the role of objects, of ontologies and the multiplicity of scales and we discuss how these conceptual developments support important methods in remote sensing such as change detection and accuracy assessment. The ramifications of the different theoretical foundations between the per-pixel paradigm and GEOBIA are analysed, as are some of the challenges along this path from pixels, to objects, to geo-intelligence. Based on several paradigm indications as defined by Kuhn and based on an analysis of peer-reviewed scientific literature we conclude that GEOBIA is a new and evolving paradigm.  相似文献   

3.
张仙  明冬萍 《测绘学报》2015,(Z1):108-116
影像分割是面向地理对象影像分析(GEOBIA)中的一个关键环节。分割评价有助于为影像选择合适的分割方法和最佳分割尺度。本文提出一种以遥感地学应用面向的对象为依据的分割方法分类及评价体系。首先将影像分割方法分为面向局部特征监测的典型目标识别和面向全局特征监测的面向GEOBIA的分割方法两组,进而针对这两组分割方法提出了两套分割评价测度指标及相应的综合评价方法。在面向典型目标识别的分割方法评价中,使用区域内部非均质度、区域间灰度对比度、区域间散度对比度、边界点梯度和单位像素运行时间作为评价测度,并针对由于评价测度间的相关性而无法直接确定各测度权重分配的问题,提出利用熵权法为各个评价测度分配权重以获得综合评价结果的分割评价方法,该评价方法可用于选择合适的分割方法。用于面向GOEBIA的分割方法中使用分割区域内均质性和区域间异质性作为评价测度,这种评价方法适用于选择最优分割尺度参数。本文通过定量试验论证了这两种评价方法的有效性,试验结果表明其在遥感应用中具有实际意义。最后本文分析了影像分割评价方法的不足及未来的发展方向。  相似文献   

4.
基于遥感影像的城市道路提取对于城市建设、规划和地图更新等有重要意义。针对高分辨率遥感影像城市道路网的复杂性,结合尺度空间思想提出一种面向对象的城市道路自动提取算法。在此基础上,使用Canny算子获取像元簇梯度图,并进行标记分水岭分割得到区域对象;建立城市道路与几何、光谱特征相关的道路规则,从分割结果中筛选出道路区域对象;使用形态学方法提取道路区域的骨架,并对骨架进行连接、光滑等后处理,最后输出道路网提取结果。实验结果表明,该方法用于复杂城市道路的高精度自动提取,对城市道路网更新有一定参考意义。  相似文献   

5.
Object based image analysis for remote sensing   总被引:3,自引:0,他引:3  
Remote sensing imagery needs to be converted into tangible information which can be utilised in conjunction with other data sets, often within widely used Geographic Information Systems (GIS). As long as pixel sizes remained typically coarser than, or at the best, similar in size to the objects of interest, emphasis was placed on per-pixel analysis, or even sub-pixel analysis for this conversion, but with increasing spatial resolutions alternative paths have been followed, aimed at deriving objects that are made up of several pixels. This paper gives an overview of the development of object based methods, which aim to delineate readily usable objects from imagery while at the same time combining image processing and GIS functionalities in order to utilize spectral and contextual information in an integrative way. The most common approach used for building objects is image segmentation, which dates back to the 1970s. Around the year 2000 GIS and image processing started to grow together rapidly through object based image analysis (OBIA - or GEOBIA for geospatial object based image analysis). In contrast to typical Landsat resolutions, high resolution images support several scales within their images. Through a comprehensive literature review several thousand abstracts have been screened, and more than 820 OBIA-related articles comprising 145 journal papers, 84 book chapters and nearly 600 conference papers, are analysed in detail. It becomes evident that the first years of the OBIA/GEOBIA developments were characterised by the dominance of ‘grey’ literature, but that the number of peer-reviewed journal articles has increased sharply over the last four to five years. The pixel paradigm is beginning to show cracks and the OBIA methods are making considerable progress towards a spatially explicit information extraction workflow, such as is required for spatial planning as well as for many monitoring programmes.  相似文献   

6.
Geographic Object-Based Image Analysis (GEOBIA) is becoming more prevalent in remote sensing classification, especially for high-resolution imagery. Many supervised classification approaches are applied to objects rather than pixels, and several studies have been conducted to evaluate the performance of such supervised classification techniques in GEOBIA. However, these studies did not systematically investigate all relevant factors affecting the classification (segmentation scale, training set size, feature selection and mixed objects). In this study, statistical methods and visual inspection were used to compare these factors systematically in two agricultural case studies in China. The results indicate that Random Forest (RF) and Support Vector Machines (SVM) are highly suitable for GEOBIA classifications in agricultural areas and confirm the expected general tendency, namely that the overall accuracies decline with increasing segmentation scale. All other investigated methods except for RF and SVM are more prone to obtain a lower accuracy due to the broken objects at fine scales. In contrast to some previous studies, the RF classifiers yielded the best results and the k-nearest neighbor classifier were the worst results, in most cases. Likewise, the RF and Decision Tree classifiers are the most robust with or without feature selection. The results of training sample analyses indicated that the RF and adaboost. M1 possess a superior generalization capability, except when dealing with small training sample sizes. Furthermore, the classification accuracies were directly related to the homogeneity/heterogeneity of the segmented objects for all classifiers. Finally, it was suggested that RF should be considered in most cases for agricultural mapping.  相似文献   

7.
Geographic object-based image analysis (GEOBIA) produces results that have both thematic and geometric properties. Classified objects not only belong to particular classes but also have spatial properties such as location and shape. Therefore, any accuracy assessment where quantification of area is required must (but often does not) take into account both thematic and geometric properties of the classified objects. By using location-based and area-based measures to compare classified objects to corresponding reference objects, accuracy information for both thematic and geometric assessment is available. Our methods provide location-based and area-based measures with application to both a single-class feature detection and a multi-class object-based land cover analysis. In each case the classification was compared to a GIS layer of associated reference data using randomly selected sample areas. Error is able to be pin-pointed spatially on per-object, per class and per-sample area bases although there is no indication whether the errors exist in the classification product or the reference data. This work showcases the utility of the methods for assessing the accuracy of GEOBIA derived classifications provided the reference data is accurate and of comparable scale.  相似文献   

8.
Unmanned Aerial Systems (UASs) have the potential to provide multi-view data, but the approaches used to extract the multi-view data from UAS and investigation of their use in image classification are currently unavailable in publications to our best knowledge. This study presents a method that combines collinearity equations and a two-phase optimization procedure to automatically project a point from real world coordinate system of an orthoimage to UAS image coordinate system (row and column numbers) to be used in multi-view data extraction. The results show average errors for the computed UAS column and row numbers were 1.6 and 1.8 pixels respectively evaluated with leave-one-out method. Based on this algorithm, it’s also for the first time that object-based multi-view data were extracted and presented, and the potential of using the multi-view data to aid Geographic Object-Based Image Analysis(GEOBIA) through bidirectional reflectance distribution function (BRDF) modelling was evaluated with two representatives of BRDFs, the Rahman-Pinty-Verstraete(RPV) and Ross-Thick-LiSparse (RTLS). Our results indicate the RPV model tends to overestimate the bidirectional reflectance for land cover types with high reflectance, while perform well for those with relatively low reflectance in our study area. To test the impact of using multi-view data on image classification, we extracted parameters from BRDF models and used these parameters as object features for object-based classification. The 10-fold cross validation results show that the 3-parameter RTLS significantly improved overall accuracy compared to the classifications relying only on the orthoimage features, while other BRDF models did not show significant improvements, raising the needs to develop new methods to better utilize the multi-view information in GEOIBA in the future.  相似文献   

9.
面向对象的遥感影像模糊分类方法研究   总被引:3,自引:0,他引:3  
郑文娟 《北京测绘》2009,(3):18-21,68
传统的基于像素的遥感影像处理方法都是基于遥感影像光谱信息极其丰富,地物间光谱差异较为明显的基础上进行的。对于只含有较少波段的高分辨率遥感影像,传统的分类方法,就会造成分类精度降低,空间数据的大量冗余,并且其分类结果常常是椒盐图像,不利于进行空间分析。本文采用面向对象的影像分类方法,考虑了对象的不同特征值,例如光谱值,形状和纹理,结合上下文关系和语义的信息,这种分类技术不仅能够使用影像属性,而且能够利用不同影像对象之间的空间关系。在对诸多对象进行分类后,再进行精度分析。在此研究提出了一种面向对象的方法结合模糊理论把许多的对象块分成不同的类别。这一过程主要有两个步骤:第一个步骤是分割。图像分割将整个图像分割成若干个对象,在这个过程中,分割尺度的选择会影响到后续的分类结果和精度。第二个步骤是分类。在这个步骤中,特征值的选择和隶属度函数的选择都对分类结果有着至关重要的影响。  相似文献   

10.
Although multiresolution segmentation (MRS) is a powerful technique for dealing with very high resolution imagery, some of the image objects that it generates do not match the geometries of the target objects, which reduces the classification accuracy. MRS can, however, be guided to produce results that approach the desired object geometry using either supervised or unsupervised approaches. Although some studies have suggested that a supervised approach is preferable, there has been no comparative evaluation of these two approaches. Therefore, in this study, we have compared supervised and unsupervised approaches to MRS. One supervised and two unsupervised segmentation methods were tested on three areas using QuickBird and WorldView-2 satellite imagery. The results were assessed using both segmentation evaluation methods and an accuracy assessment of the resulting building classifications. Thus, differences in the geometries of the image objects and in the potential to achieve satisfactory thematic accuracies were evaluated. The two approaches yielded remarkably similar classification results, with overall accuracies ranging from 82% to 86%. The performance of one of the unsupervised methods was unexpectedly similar to that of the supervised method; they identified almost identical scale parameters as being optimal for segmenting buildings, resulting in very similar geometries for the resulting image objects. The second unsupervised method produced very different image objects from the supervised method, but their classification accuracies were still very similar. The latter result was unexpected because, contrary to previously published findings, it suggests a high degree of independence between the segmentation results and classification accuracy. The results of this study have two important implications. The first is that object-based image analysis can be automated without sacrificing classification accuracy, and the second is that the previously accepted idea that classification is dependent on segmentation is challenged by our unexpected results, casting doubt on the value of pursuing ‘optimal segmentation’. Our results rather suggest that as long as under-segmentation remains at acceptable levels, imperfections in segmentation can be ruled out, so that a high level of classification accuracy can still be achieved.  相似文献   

11.
在全面分析基于特征的建模技术的基础上,利用Geodatabase面向对象技术和版本管理的双重支持,在基于特征的时空数据模型中引入版本化管理思想,探讨了一种基于Geodatabase的特征-版本时空数据模型构建方法。采用时态版本模式管理和存储抽象生成的独立特征对象,有效地消除了地理空间信息几何分层的弊端,并实现了时空数据的有效存储和多用户并发控制,为地理实体空间信息的历史重构、跟踪变化空间分析等提供一种新的思路。  相似文献   

12.
Identifying and tracking objects in surveillance videos is an important means of mining information during surveillance. Currently, most object-tracking methods rely only on image features, which cannot accurately express the motion of the tracked object in real geographical scenes and are easily influenced by occlusion and surrounding objects having similar features. However, tracked objects, such as pedestrians and vehicles, usually move in geographical space with fixed patterns of motion, and the motion in a short time is constrained by geographical space and time, the motion trajectory is predictable, and the range of motion is limited. Therefore, based on the SiamFC object tracking framework, this study introduces geographical spatiotemporal constraints into the tracking framework and proposes the GeoSiamFC method. The objective of this is to: (1) construct the mapping relationship between geographical space and image space to solve the problem that the pixel movement within the image after perspective imaging cannot accurately express the motion of the tracked object in a real geographical scene; (2) add candidate search areas according to the predicted trajectory location to correct the tracking errors caused by the occlusion of the object; and (3) focus on the search for the range of motion of the mapped pixel within the image space according to the limited geographical range of motion of the tracked objects in a certain time to reduce the interference of similar objects within the search area. In this study, separate experiments were conducted on a common test dataset using multiple methods to deal with challenges such as occlusion and illumination changes. In addition, a robust test dataset with noise addition and luminance adjustment based on the common test dataset was used. The results show that GeoSiamFC outperforms other object-tracking methods in the common test dataset with a precision score of 0.995 and a success score of 0.756 compared with most other object-tracking algorithms under the base condition of using only shallow networks. Moreover, GeoSiamFC maintained the highest precision score (0.970) and high success score (0.734) in the more challenging robust test dataset as well. The tracking speed of 59 frames per second far exceeds the real-time requirement of 25 FPS. Geographical spatiotemporal constraints were considered to improve tracker performance while providing real-time feedback on the motion trajectory of the target in geographical space. Thus, the proposed method is suitable for real-time tracking of the motion trajectory of a target in real geographical scenes in various surveillance videos.  相似文献   

13.
When analyzing spatial issues, geographers are often confronted with many problems with regard to the imprecision of the available information. It is necessary to develop representation and design methods which are suited to imprecise spatiotemporal data. This led to the recent proposal of the F‐Perceptory approach. F‐Perceptory models fuzzy primitive geometries that are appropriate in representing homogeneous regions. However, the real world often contains cases that are much more complex, describing geographic features with composite structures such as a geometry aggregation or combination. From a conceptual point of view, these cases have not yet been managed with F‐Perceptory. This article proposes modeling fuzzy geographic objects with composite geometries, by extending the pictographic language of F‐Perceptory and its mapping to the Unified Modeling Language (UML) necessary to manage them in object/relational databases. Until now, the most commonly used object modeling tools have not considered imprecise data. The extended F‐Perceptory is implemented under a UML‐based modeling tool in order to support users in fuzzy conceptual data modeling. In addition, in order to properly define the related database design, an automatic derivation process is implemented to generate the fuzzy database model.  相似文献   

14.
In human cognition, both visual features (i.e., spectrum, geometry and texture) and relational contexts (i.e. spatial relations) are used to interpret very-high-resolution (VHR) images. However, most existing classification methods only consider visual features, thus classification performances are susceptible to the confusion of visual features and the complexity of geographic objects in VHR images. On the contrary, relational contexts between geographic objects are some kinds of spatial knowledge, thus they can help to correct initial classification errors in a classification post-processing. This study presents the models for formalizing relational contexts, including relative relations (like alongness, betweeness, among, and surrounding), direction relation (azimuth) and their combination. The formalized relational contexts were further used to define locally contextual regions to identify those objects that should be reclassified in a post-classification process and to improve the results of an initial classification. The experimental results demonstrate that the relational contexts can significantly improve the accuracies of buildings, water, trees, roads, other surfaces and shadows. The relational contexts as well as their combinations can be regarded as a contribution to post-processing classification techniques in GEOBIA framework, and help to recognize image objects that cannot be distinguished in an initial classification.  相似文献   

15.
高光谱图像分类是遥感领域中一个具有挑战性的问题。基于深度学习框架的高光谱图像分类方法,由于其良好的分类性能受到了越来越多的关注。然而,这些方法普遍存在的问题为:模型的训练不仅需要大量的时间,而且还需要大量的标签样本。针对此问题,本文提出了一种基于超像素图卷积网络的高光谱图像分类方法。该方法以超像素作为图的节点,极大地减小了图的规模,从而提高了分类效率;提出的超像素合并技术能有效地融合光谱-空间信息,增强了空间信息在分类中的作用;为了验证该方法的有效性,在Indian Pines、Pavia University两个实际数据集上进行试验,并与一些先进的基于深度学习框架的高光谱图像分类方法进行比较。结果表明,本文方法在分类精度和分类效率上均优于其他方法。  相似文献   

16.
Environmental processes are usually conceptualized as complex systems whose dynamics are best understood by examining the relationships and interactions of their constituent parts. The cellular automata paradigm, as a bottom‐up modeling approach, has been widely used to study the macroscopic behavior of these complex natural processes. However, the cellular automata models are largely restricted to the two‐dimensional spatial perspective even though the process dynamics they represent evolve in the three spatial dimensions. The objective of this study is to develop a voxel‐based automata approach for modeling the propagation of airborne pollutants in three‐dimensional space over time. The GIS‐based geo‐atom theory was used to manage the data within the automaton. The simulation results indicate the model has the capability to generate effective four‐dimensional (4D) simulations from simple transition rules that describe the processes of particle advection and diffusion. The application of voxel‐based automata and the geo‐atom concepts allows for a detailed 4D analysis and tracking of the changes in the voxel space at every time‐step. The proposed modeling approach provides new means to examine the relationships between pattern and process in 4D.  相似文献   

17.
深度残差网络的多光谱遥感图像显著目标检测   总被引:2,自引:2,他引:0  
本文侧重于介绍智能化摄影测量深度学习的深度残差方法。显著目标检测致力于自动检测和定位图像中人最感兴趣的目标区域。多波段遥感图像因其更加丰富的光谱信息和揭示观测目标物理属性的能力在目标检测中获得重要应用。传统的显著目标检测方法通过手工设计特征,计算图像各像素或者超像素与邻域像素或者超像素之间的对比度检测显著目标。随着深度学习的巨大发展,特别是全卷积神经网络的引入,基于深度卷积网络的显著目标检测算法取得重要进步。然而,由于数据获取和标记的困难,多波段遥感图像显著目标检测的研究依然主要采用手工设计特征。本文研究基于深度卷积神经网络的多波段遥感图像显著目标检测算法,提出一种基于深度残差网络的自上而下的多光波段遥感图像显著目标检测网络,该网络可以有效挖掘深度残差网络不同层次上的显著性特征,以端对端方式实现显著目标检测。为了应对多波段遥感图像数据量有限、无法训练深度残差网络的问题,本文提出通过浅层神经网络从RGB图像直接生成多波段遥感图像,实现光谱方向的超分辨率。在现有多波段遥感图像和可见光图像显著目标检测数据集上的试验结果超过当前最好方法10%以上,验证了本文方法的有效性。  相似文献   

18.
ABSTRACT

The U.S. Geological Survey (USGS) National Geospatial Program (NGP) seeks to i) create semantically accessible terrain features from the pixel-based 3D Elevation Program (3DEP) data, and ii) enhance the usability of the USGS Geographic Names Information System (GNIS) by associating boundaries with GNIS features whose spatial representation is currently limited to 2D point locations. Geographic object-based image analysis (GEOBIA) was determined to be a promising method to approach both goals. An existing GEOBIA workflow was modified and the resulting segmented objects and terrain categories tested for a strategically chosen physiographic province in the mid-western US, the Ozark Plateaus. The chi-squared test of independence confirmed that there is significant overall spatial association between terrain categories of the GEOBIA and GNIS feature classes. Contingency table analysis also suggests strong category-specific associations between select GNIS and GEOBIA classes. However, 3D visual analysis revealed that GEOBIA objects resembled segmented regions more than they did individual landform objects, with their boundaries often failing to correspond to match what people would likely perceive as landforms. Still, objects derived through GEOBIA can provide initial baseline landscape divisions that can improve the efficiency of more specialized feature extraction methods.  相似文献   

19.
This paper is an exploratory study, which aimed to discover the synergies of data fusion and image segmentation in the context of EO-based rapid mapping workflows. Our approach pillared on the geographic object-based image analysis (GEOBIA) focusing on multiscale, internally-displaced persons’ (IDP) camp information extraction from very high spatial resolution (VHSR) images. We applied twelve pansharpening algorithms to two subsets of a GeoEye-1 image scene that was taken over a former war-induced ephemeral settlement in Sri Lanka. A multidimensional assessment was employed to benchmark pansharpening algorithms with respect to their spectral and spatial fidelity. The multiresolution segmentation (MRS) algorithm of the eCognition Developer software served as the key algorithm in the segmentation process. The first study site was used for comparing segmentation results produced from the twelve fused products at a series of scale, shape, and compactness settings of the MRS algorithm. The segmentation quality and optimum parameter settings of the MRS algorithm were estimated by using empirical discrepancy measures. Non-parametric statistical tests were used to compare the quality of image object candidates, which were derived from the twelve pansharpened products. A wall-to-wall classification was performed based on a support vector machine (SVM) classifier to classify image objects candidates of the fused images. The second site simulated a more realistic crisis information extraction scenario where the domain expertise is crucial in segmentation and classification. We compared segmentation and classification results of the original images (non-fused) and twelve fused images to understand the efficacy of data fusion. We have shown that the GEOBIA has the ability to create meaningful image objects during the segmentation process by compensating the fused image’s spectral distortions with the high-frequency information content that has been injected during fusion. Our findings further questioned the necessity of the data fusion step in rapid mapping context. Bypassing time-intensive data fusion helps to actuate EO-based rapid mapping workflows. We, however, emphasize the fact that data fusion is not limited to VHSR image data but expands over many different combinations of multi-date, multi-sensor EO-data. Thus, further research is needed to understand the synergies of data fusion and image segmentation with respect to multi-date, multi-sensor fusion scenarios and extrapolate our findings to other remote sensing application domains beyond EO-based crisis information retrieval.  相似文献   

20.
Object based image analysis (OBIA) is an approach increasingly used in classifying high spatial resolution remote sensing images. Object based image classifiers first segment an image into objects (or image segments), and then classify these objects based on their attributes and spatial relations. Numerous algorithms exist for the first step of the OBIA process, i.e. image segmentation. However, less research has been conducted on the object classification part of OBIA, in particular the spatial relations between objects that are commonly used to construct rules for classifying image objects and refining classification results. In this paper, we establish a context where objects are areal (not points or lines) and non-overlapping (we call this “single-valued” space), and propose a framework of binary spatial relations between segmented objects to aid in object classification. In this framework, scale-dependent “line-like objects” and “point-like objects” are identified from areal objects based on their shapes. Generally, disjoint and meet are the only two possible topological relations between two non-overlapping areal objects. However, a number of quasi- topological relations can be defined when the shapes of the objects involved are considered. Some of these relations are fuzzy and thus quantitatively defined. In addition, we define the concepts of line-like objects (e.g. roads) and point-like objects (e.g. wells), and develop the relations between two line-like objects or two point-like objects. For completeness, cardinal direction relations and distance relations are also introduced in the proposed context. Finally, we implement the framework to extract roads and moving vehicles from an aerial photo. The promising results suggest that our methods can be a valuable tool in defining rules for object based image analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号