首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Although the stellar initial mass function (IMF) has only been directly determined in star clusters, it has been manifoldly applied on galaxy-wide scales. But taking the clustered nature of star formation into account the galaxy-wide IMF is constructed by adding all IMFs of all young star clusters leading to an integrated galactic initial mass function (IGIMF). The IGIMF is top-light compared to the canonical IMF in star clusters and steepens with decreasing total star formation rate (SFR). This discrepancy is marginal for large disc galaxies but becomes significant for Small Magellanic Cloud type galaxies and less massive ones. We here construct IGIMF-based relations between the total far- and near-ultraviolet luminosities of galaxies and the underlying SFR. We make the prediction that the Hα luminosity of star-forming dwarf galaxies decreases faster with decreasing SFR than the ultraviolet (UV) luminosity. This turn-down of the Hα/UV-flux ratio should be evident below total SFRs of  10−2 M yr−1  .  相似文献   

2.
For the mechanism of production of γ-ray bursts (GRBs) it is rather generally recognized that the long-term γ-ray burst (LGRB) originates from the deaths of massive stars while the short-term γ-ray burst (SGRB) originates from the merging of close binaries. Therefore the speculation naturally follows that the number of LGRBs is directly proportional to the star formation rate (SFR). However, it is indicated from recent data analyses that this speculation does not fit the observations very well. It is considered that only massive stars with masses greater than a certain critical mass can produce the LGRB, so the initial mass function (IMF) of stars can significantly affect the production rate of LGRBs. In this paper it is considered that the IMF of stars can be used to explain the observed number distribution of the LGRBs with the redshift, and this has led to some good results.  相似文献   

3.
The mass of unresolved young star clusters derived from spectrophotometric data may well be off by a factor of 2 or more once the migration of massive stars driven by mass segregation is accounted for. We quantify this effect for a large set of cluster parameters, including variations in the stellar initial mass function (IMF), the intrinsic cluster mass, and mean mass density. Gas-dynamical models coupled with the Cambridge stellar evolution tracks allow us to derive a scheme to recover the real cluster mass given measured half-light radius, one-dimensional velocity dispersion and age. We monitor the evolution with time of the ratio of real to apparent mass through the parameter η. When we compute η for rich star clusters, we find non-monotonic evolution in time when the IMF stretches beyond a critical cut-off mass of  25.5 M  . We also monitor the rise of colour gradients between the inner and outer volume of clusters: we find trends in time of the stellar IMF power indices overlapping well with those derived for the Large Magellanic Cloud cluster NGC 1818 at an age of 30 Myr. We argue that the core region of massive Antennae clusters should have suffered from much segregation despite their low ages. We apply these results to a cluster mass function, and find that the peak of the mass distribution would appear to observers shifted to lower masses by as much as 0.2 dex. The star formation rate derived for the cluster population is then underestimated by from 20 to 50 per cent.  相似文献   

4.
5.
The study of young stellar populations has revealed that most stars are in binary or higher order multiple systems. In this study, the influence on the stellar initial mass function (IMF) of large quantities of unresolved multiple massive stars is investigated by taking into account the stellar evolution and photometrically determined system masses. The models, where initial masses are derived from the luminosity and colour of unresolved multiple systems, show that even under extreme circumstances (100 per cent binaries or higher order multiples), the difference between the power-law index of the mass function (MF) of all stars and the observed MF is small (≲0.1). Thus, if the observed IMF has the Salpeter index  α= 2.35  , then the true stellar IMF has an index not flatter than  α= 2.25  . Additionally, unresolved multiple systems may hide between 15 and 60 per cent of the underlying true mass of a star cluster. While already a known result, it is important to point out that the presence of a large number of unresolved binaries amongst pre-main-sequence stars induces a significant spread in the measured ages of these stars even if there is none. Also, lower mass stars in a single-age binary-rich cluster appear older than the massive stars by about 0.6 Myr.  相似文献   

6.
We use numerical simulations of the fragmentation of a  1000 M  molecular cloud and the formation of a stellar cluster to study how the initial conditions for star formation affect the resulting initial mass function (IMF). In particular, we are interested in the relation between the thermal Jeans mass in a cloud and the knee of the IMF, i.e. the mass separating the region with a flat IMF slope from that typified by a steeper, Salpeter-like, slope. In three isothermal simulations with   M Jeans= 1, 2  and  5 M  , the number of stars formed, at comparable dynamical times, scales roughly with the number of initial Jeans masses in the cloud. The mean stellar mass also increases (though less than linearly) with the initial Jeans mass in the cloud. It is found that the IMF in each case displays a prominent knee, located roughly at the mass scale of the initial Jeans mass. Thus clouds with higher initial Jeans masses produce IMFs which are shallow to higher masses. This implies that a universal IMF requires a physical mechanism that sets the Jeans mass to be near  1 M  . Simulations including a barotropic equation of state as suggested by Larson, with cooling at low densities followed by gentle heating at higher densities, are able to produce realistic IMFs with the knee located at  ≈1 M  , even with an initial   M Jeans= 5 M  . We therefore suggest that the observed universality of the IMF in the local Universe does not require any fine tuning of the initial conditions in star forming clouds but is instead imprinted by details of the cooling physics of the collapsing gas.  相似文献   

7.
We use data from the Hipparcos catalogue to construct colour–magnitude diagrams for the solar neighbourhood, which are then treated using advanced Bayesian analysis techniques to derive the star formation rate history, SFR ( t ), of this region over the last 3 Gyr. The method we use allows the recovery of the underlying SFR ( t ) without the need of assuming any a priori structure or condition on SFR ( t ), and hence yields a highly objective result. The remarkable accuracy of the data permits the reconstruction of the local SFR ( t ) with an unprecedented time resolution of ≈50 Myr. An SFR ( t ) that has an oscillatory component of period ≈0.5 Gyr is found, superimposed on a small level of constant star formation activity. Problems arising from the non-uniform selection function of the Hipparcos satellite are discussed and treated. Detailed statistical tests are then performed on the results, which confirm the inferred SFR ( t ) to be compatible with the observed distribution of stars.  相似文献   

8.
Star formation happens in a clustered way which is why the star cluster population of a particular galaxy is closely related to the star formation history of this galaxy. From the probabilistic nature of a mass function follows that the mass of the most massive cluster of a complete population, M max, has a distribution with the total mass of the population as a parameter. The total mass of the population is connected to the star formation rate (SFR) by the length of a formation epoch.
Since due to evolutionary effects only massive star clusters are observable up to high ages, it is convenient to use this M max(SFR) relation for the reconstruction of a star formation history. The age distribution of the most massive clusters can therefore be used to constrain the star formation history of a galaxy. The method, including an assessment of the inherent uncertainties, is introduced with this contribution, while following papers will apply this method to a number of galaxies.  相似文献   

9.
We investigate the dependence of stellar properties on the mean thermal Jeans mass in molecular clouds. We compare the results from the two largest hydrodynamical simulations of star formation to resolve the fragmentation process down to the opacity limit, the first of which was reported by Bate, Bonnell & Bromm. The initial conditions of the two calculations are identical except for the radii of the clouds, which are chosen so that the mean densities and mean thermal Jeans masses of the clouds differ by factors of 9 and 3, respectively.
We find that the denser cloud, with the lower mean thermal Jeans mass, produces a higher proportion of brown dwarfs and has a lower characteristic (median) mass of the stars and brown dwarfs. This dependence of the initial mass function (IMF) on the density of the cloud may explain the observation that the Taurus star-forming region appears to be deficient in brown dwarfs when compared with the Orion Trapezium cluster. The new calculation also produces wide binaries (separations >20 au), one of which is a wide binary brown dwarf system.
Based on the hydrodynamical calculations, we develop a simple accretion/ejection model for the origin of the IMF. In the model, all stars and brown dwarfs begin with the same mass (set by the opacity limit for fragmentation) and grow in mass until their accretion is terminated stochastically by their ejection from the cloud through dynamically interactions. The model predicts that the main variation of the IMF in different star-forming environments should be in the location of the peak (due to variations in the mean thermal Jeans mass of the cloud) and in the substellar regime. However, the slope of the IMF at high masses may depend on the dispersion in the accretion rates of protostars.  相似文献   

10.
A detailed study of the star formation history of the Sagittarius dwarf spheroidal galaxy is performed through the analysis of data from the Sagittarius Dwarf Galaxy Survey (SDGS). Accurate statistical decontamination of the SDGS colour–magnitude diagrams (CMDs) allows us to obtain many useful constraints on the age and metal content of the Sgr stellar populations in three different regions of the galaxy.
A coarse metallicity distribution of Sgr stars is derived, ranging from [Fe/H]∼−2.0 to [Fe/H]∼−0.7, the upper limit being somewhat higher in the central region of the galaxy. A qualitative global fit to all the observed CMD features is attempted, and a general scheme for the star formation history of the Sgr dSph is derived. According to this scheme, star formation began at a very early time from a low metal content interstellar medium and lasted for several  Gyr, coupled with progressive chemical enrichment. The star formation rate (SFR) had a peak from 8 to 10  Gyr ago, when the mean metallicity was in the range −1.3≤[Fe/H]≤−0.7. After that maximum, the SFR rapidly decreased and a very low rate of star formation took place until ∼1–0.5  Gyr ago.  相似文献   

11.
伽玛射线暴的产生机制比较公认的是:长暴产生于大质量恒星死亡;短暴产生于密近双星合并.因此人们很自然地推测长暴和恒星形成率直接成比例,但是最近数据分析表明这并不能很好地拟合观测.考虑到只有质量大于某一临界质量的大质量恒星才可能产生长暴,因此恒星初始质量分布函数对长暴的产生率会有较大影响.考虑用恒星初始质量分布函数来解释长暴观测个数随红移的分布,得到了比较好的结果.  相似文献   

12.
We use deep Hubble Space Telescope photometry of the rich, young (∼20- to 45-Myr old) star cluster NGC 1818 in the Large Magellanic Cloud to derive its stellar mass function (MF) down to  ∼0.15 M  . This represents the deepest robust MF thus far obtained for a stellar system in an extragalactic, low-metallicity  ([Fe/H]≃−0.4 dex)  environment. Combining our results with the published MF for masses above  1.0 M  , we obtain a complete present-day MF. This is a good representation of the cluster's initial MF (IMF), particularly at low masses, because our observations are centred on the cluster's uncrowded half-mass radius. Therefore, stellar and dynamical evolution of the cluster will not have affected the low-mass stars significantly. The NGC 1818 IMF is well described by both a lognormal and a broken power-law distribution with slopes of  Γ= 0.46 ± 0.10  and  Γ≃−1.35  (Salpeter-like) for masses in the range from 0.15 to  0.8 M  and greater than  0.8 M  , respectively. Within the uncertainties, the NGC 1818 IMF is fully consistent with both the Kroupa solar neighbourhood and the Chabrier lognormal mass distributions.  相似文献   

13.
本文根据球状星团所特有的金属丰度特征,利用星族综合方法,探讨了球状星团诸恒星的形成史。研究表明,这些恒星不可能通过恒星形成率和初始质量函数均不随时间变化的单一恒星形成模式产生。原初云通过恒星演化而得到金属丰度污染的过程和多数恒星的形成过程必须分为两个不同的阶段。 球状星团得到金属丰度污染的过程中,若恒星形成具有通常的初始质量函数,则其恒星形成率必须较低,且初始质量函数不能太陡,从而使污染过程中只形成数量较少的低质量恒星,以保证单个球状星团内金属丰度的均匀性。另一种可能性是污染阶段有非常特殊的初始质量函数,只形成大质量的恒星,从而除提供适量污染外不留下任何痕迹。 多数恒星应是在原初云不同部位得到适当污染后通过局域的短暂的爆发性恒星形成(星暴过程)产生。本文进一步探讨了在Fan和Rees球状星团形成模型的框架下,两相介质中温云块相互碰撞造成星暴过程的可能性。  相似文献   

14.
The hypothesis of secular variations in the stellar initial mass function (IMF) is studied. It is found that neither the present-day mass function of the nearby main sequence field stars nor the velocity distribution of these stars are contradictory with this hypothesis. The luminosity functions of unbiased kinematically defined age-groups of the nearby stars also provide no strong constraints. Simple evolution models with time-dependent IMF and star formation rate enable to fit the data of blue irregular galaxies. Some problems with an universal IMF are pointed out.  相似文献   

15.
OB星协和年轻星团是恒星形成与早期演化的“化石”,同时也是研究初始重质量函数(IMF)的最好场所;文中就OB星协和年轻星团的形成和早期演化方面的研究进展作了一评述,还论述了IMF的测定和研究情况,并对相关的速逃OB星及蓝离散星问题作了简要介绍。  相似文献   

16.
We have carried out Monte Carlo simulations in which we generate a random pairing of objects drawn from a pre-assumed single-star power-law initial mass function (IMF), which we call the fundamental IMF. We show how the mass functions of primary stars and secondary stars and the mass function of the total mass of systems (if we could resolve them) differ from the underlying fundamental IMF for different slopes of this IMF. We also compare our results with the observed IMF, the binary frequency and the binary mass-ratio distributions for field stars and conclude that the fundamental IMF of subsolar mass stars could be steeper than is currently believed. In other words, the low-mass turn-over of the observed ('apparent') IMF could be spurious, if the main-sequence binary fraction of field stars is close to 100 per cent (perhaps owing to invisible companions).  相似文献   

17.
We use three indicators of massive star formation, Hα, FIR and non-thermal radio luminosities, to compare estimates of the star formation rate (SFR) for a sample of 34 spiral galaxies. To adjust the SFR values obtained from these indicators, we considered the slope, α, and/or the upper mass limit M up of the initial mass function (IMF) as free parameters. The best agreement between the indicators is found for M up≈ 60-100 M⊙ and α ≈–3.1 at the high-mass end of the IMF (M>10 M⊙.Parallelwith the SFR we also estimated the FIR excess X FIR, defined as the fraction of the observed FIR not directly related to young massive stars. X FIR is found to be well correlated with types of spiral galaxies and their colours (B-V): the redder a galaxy, the higher its FIR excess. We conclude that for any parameters of the IMF the observed FIR flux of early-type spiral galaxies needs an additional source of energy apart from massive star radiation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
The present day mass function (PDMF) is derived from the data material of the immediate solar neighbourhood. From the comparison of the lower mass part (R<R) and the high mass part of the PDMF it is estimated that the mean past star formation rate related to the present one is in the range 0.08—2.0, supposed the initial mass function (IMF) is time independent. References to probable time dependences of the IMF are summarized. Using the PDMF as a constraint on the temporal variation of the IMF, unplausibilities for the star formation rate result if the IMF monotonously flattens in time uniform over the whole mass range.  相似文献   

19.
We use recent Hubble Space Telescope colour–magnitude diagrams of the resolved stellar populations of a sample of local dSph galaxies (Carina, Leo I, Leo II and Ursa Minor) to infer the star formation histories of these systems, SFR ( t ). Applying a new variational calculus maximum likelihood method, which includes a full Bayesian analysis and allows a non-parametric estimate of the function one is solving for, we infer the star formation histories of the systems studied. This method has the advantage of yielding an objective answer, as one need not assume a priori the form of the function one is trying to recover. The results are checked independently using Saha's W statistic. The total luminosities of the systems are used to normalize the results into physical units and derive SN type II rates. We derive the luminosity-weighted mean star formation history of this sample of galaxies.  相似文献   

20.
A new photometric and spectroscopic survey of the star formation region (SFR) CMa R1 is described. In a sample of 165 stars brighter than 13th mag, 88 stars were found to be probable members of the SFR. They are defined as early-type stars with E ( B − V )0.16 mag, which corresponds to a distance of about 1 kpc. 74 of the probable members are B stars. 19 stars are possibly associated with an IRAS point source. We derive a most probable distance of 1050±150 pc to the association. It appears that about 80 candidate members are pre-main-sequence stars with ages lower than 6 million years, while the main sequence extends over 6.0–7.6 mag, which is consistent with star formation starting about 8 million years ago and continuing until at least half a million years ago. Two bright B stars in the association (GU CMa and FZ CMa) seem to be much older and probably do not originate from the same star formation episode. The star formation efficiency appears to increase roughly monotonically with time up to half a million years ago. From our data, we conclude that only a minor fraction of the stars has been created through the scenario suggested by Herbst & Assousa, in which the members of CMa R1 form by compression of ambient material by a supernova shock wave. An extensive search for candidate members with H α emission did not reveal new Herbig Ae/Be candidates, so that the number of stars in this class seems to be limited to four: Z CMa, LkH α 218, LkH α 220 and possibly HD 53367.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号