首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we assessed the relationship between the occurrence of the invasive water hyacinth (Eichhornia crassipes) and water quality properties as well as macroinvertebrate diversity in a tropical reservoir, situated in western Ecuador. Macroinvertebrates and physico-chemical water quality variables were sampled at 32 locations (during the dry season of 2013) in both sites covered and non-covered by water hyacinth in the Daule-Peripa reservoir. The results indicated that, in terms of water quality, only turbidity was significantly different between sampling sites with and without water hyacinth (Mann–Whitney U-test, p < 0.01). The habitat suitability model showed that water hyacinth was present at sites with a low turbidity. The percentage water hyacinth cover increased with decreasing turbidity. The Biological Monitoring Working Party-Colombia score and the Margalef diversity index were significantly higher (Mann–Whitney U-test, p < 0.01) at sampling sites where water hyacinth was present compared to water hyacinth absent sites. However, there were no significant differences in the Shannon–Wiener index, Evenness index and Simpson index between the sampling sites with and without water hyacinth. Our results suggest that water hyacinth cover was an important variable affecting the diversity of macroinvertebrates in the Daule-Peripa reservoir, with intermediate levels of water hyacinth cover having a positive effect on the diversity of macroinvertebrates. Information on the habitat suitability of water hyacinth and its effect on the physico-chemical water quality and the macroinvertebrate community are essential to develop conservation and management programs for large tropical reservoirs such as the Daule-Peripa reservoir and the Guayas river basin, where water resources are being at high risk due to expansion of agricultural and industrial development activities.  相似文献   

2.
The viscosity of basalts (quartz and olivine tholeiite) was studied under pressure in dry conditions and in the presence of water. In dry conditions at 1400°C when pressure increases to 20 kbars the viscosity reduces by a factor of 2. In conditions of water saturation of basalt melts at 5 kbar the viscosity is smaller by a factor of ~ 50 than that in dry conditions. In the water undersaturated conditions when water content is fixed (3.3% H2O) in melt the viscosity considerably decreases with pressure and takes intermediate value between those in dry and water saturated conditions. Experimental data recently obtained permit us to consider the peculiarities of physical properties of magma in the presence of water on a new base. Ascending magma can reach critical velocities of transition to the turbulent regime under negligible pressure drop, as a result of low viscosity. It is known at present that water influences on the viscosity of acidic melt under pressure of 1–8 kbars and at temperatures between 800–1200°C. Various authors gave physico-chemical evaluation of the dynamics of granite melts on the basis of these data. The viscosity of basalt melts and their dynamics under normal pressure is also well-known. The known new experimental data of basaltic melt viscosity under pressure in dry conditions (Kushiro et al., 1976;Khitarov et al., 1978) and in the presence of water (Khitarov et al., 1976) embrace broader intervals of physico-chemical conditions as on the pressure (up to 20–30 kbar) as well on the content of water (from 3% up to 12 %). These data permitted to evaluate on a new base the dynamics of magmatic melts under pressure.  相似文献   

3.
Is the total evaporation from a wetland surface (including: open water evaporation, plant transpiration and wet/dry soil evaporation) similar, lower, or higher than evaporation from an open water surface under the same climatic conditions? This question has been the subject of long debate; the literature does not show a consensus. In this paper we contribute to the discussion in two steps. First, we analyse the evaporation from a wetland with emergent vegetation (Ea) versus open water evaporation (Ew) by applying the Penman–Monteith equation to identical climate input data, but with different biophysical characteristics of each surface. Second, we assess the variability of measured Ea/Ew through a literature review of selected wetlands around the globe.We demonstrate that the ratio Ea/Ew is site-specific, and a function of the biophysical properties of the wetland surface, which can also undergo temporal variability depending on local hydro-climate conditions. Second, we demonstrate that the Penman–Monteith model provides a suitable basis to interpret Ea/Ew variations. This implies that the assumption of wetland evaporation to behave similar to open water bodies is not correct. This has significant implications for the total water consumption and water allocation to wetlands in river basin management.  相似文献   

4.
5.
The behaviour of three intertidal molluscs exposed to water soluble fractions of diesel were studied. The rate of crawling of Cerethidea fluviatilis decreased with an increase in concentration and the animals were completely immobilized at the highest dosage (50%). The burrowing ability of Katelysia opima was found to be suppressed in three different concentrations (25,50 and 75%). Smaller individuals (15–20 mm) appearing to be less sensitive than larger forms (20–25 mm). Byssal thread production in Perna viridis was significantly depressed in all concentrations, except the lowest doses of toxicant (5%), where slight stimulation was observed only with smaller sized individuals (20–30 mm).  相似文献   

6.
Two stream function solutions for steady two-dimensional water waves are reviewed. The algorithm developed by Dalrymple (1974, Proc. 6th Conf. Offshore Tech., pp. 843–856) and used by Hudspeth and Slotta (1978, Proceedings of the American Society of Civil Engineers,104, 319–334) is compared with the algorithm developed by Chaplin (1980, Coastal Engineering,3, 179–205). By examining more closely the near-breaking wave conditions, it is shown that celerity does not increase monotonically with increasing dimensionless wave steepness. Numerical comparisons between the two algorithms indicate that the Dalrymple algorithm is more accurate for near-breaking waves and requires less computer programming effort. Neither algorithm appears to be able to predict breaking wave conditions as accurately as the Cokelet (1977, Philosophical Transactions of the Royal Society of London,A286, 183–230) algorithm. Numerical comparisons of the Dalrymple free surface error convergence criteria with the Chaplin significant figures convergence criteria indicate that the free surface error convergence criterion is more consistent for stream function representations.  相似文献   

7.
The temperature dependence of water diffusivity in rhyolite melts over the range 650–950°C and [PT(H2O] = 700 bars is evaluated from water concentration-distance profiles measured in glass with an ion microprobe. Diffusivities are exponentially dependent on concentration over this temperature range and vary from about 10?8 cm2/s at 650°C to about 10?7 cm2/s at 950°C at 2 wt.% water. Water solubility also varies with temperature at a rate of ?0.14 wt. per 100°C increase. The avtivation energy (Ea) appears to be constant at 19 ± 1kal/mole for 1, 2,and 3 wt.% H2O. Comparison of these data with results for cation diffusion indicates that this value is a minimum Ea for diffusion of any species in a rhyolite melt.Compensation plots of log10D0 (the frequency factor) versus Ea indicate that hydrous rhyolite melts follow the same trend as anhydrous basalts. D0 increases for H2O and Ca2+ [1] as Ea decreases. This suggests that these molecules may diffuse by different mechanisms than do monovalent cations, and that hydration of the melt affects diffusion of Ca2+ and H2O differently than it does monovalent cation diffusion. The results imply that dramatic increases in cation diffusivities by hydration [1] may occur with additions of less than 1 wt.% H2O.  相似文献   

8.
Water level, sediment heterogeneity, and plant density are important factors that determine plant growth, distribution, and community structure. In the present study, we investigated the effects of these factors on the growth and root characteristics of Carex brevicuspis. We conducted an outdoor experiment to monitor biomass accumulation and allocation, relative root distribution mass ratio, longest root length, and total N and P contents of C. brevicuspis plants. We used a factorial design with two water levels (0 cm and −15 cm relative to the soil surface, named high and low water level treatments, respectively), three sediment types (sand/clay sediment with 0–15 cm of sand and 15–30 cm of clay; mixed sediment with 0–30 cm mixture of sand and clay with 1:1 volumw ratio; and clay/sand sediment with 0–15 cm of clay and 15–30 cm of sand), and three plant densities (88 plants per m2, 354 plants per m2, and 708 plants per m2). Biomass accumulation decreased with increasing plant density and was significantly higher in the low water level and the clay/sand sediment than in the high water level and the other two sediment types. The shoot:root ratio was markedly higher in the high water level than in the low water level and decreased with increasing plant density; further, in the high water level, it was significantly lower in the sand/clay sediment than in the other two sediment types. The relative root distribution mass ratio was markedly higher in the high water level treatments than in the low water level treatments. Further, in the high water level treatments, the relative root distribution mass ratio increased with increasing plant density in the clay/sand sediment and was lower in the sand/clay sediment than in the other two sediment types. The longest root length was significantly lower in the high water level than in the low water level and increased with increasing plant density in the sand/clay sediment in the high water level. Total N content in the plants was influenced only by sediment type; on the other hand, total P content was markedly higher in the high water level than in the low water level. Our data indicate that growth of C. brevicuspis was limited by higher water level, higher density and sand/clay sediment. Plants can increase shoot:root ratio and develop shallow root system to acclimate to high water level and thus could adjust shoot:root ratio and root characteristics, e.g. decrease their shoot:root ratio and allocating more root and increasing root length to the nutrient rich layer to acclimate to conditions of higher density and sediment heterogeneity.  相似文献   

9.
Recent studies in many developing countries have shown that Small Scale Independent Providers (SSIPs) in low-income areas (LIAs) are practical alternatives to water utilities. This study explored supply dynamics and quality of alternative water sources in four LIAs of Lilongwe City in Malawi using qualitative and quantitative methods. Household-level surveys (n = 120) and transect walks were employed to determine the socio-economic activities in the areas. One-on-one discussions were made with water source owners (SSIPs) (n = 24). Data on policy and institutional frameworks was collected through desktop study and Key Informant Interviews (n = 25). Quality of the water sources (shallow wells and boreholes) was determined by collecting grab samples (n = 24) in triplicate using 500 mL bottles. Selected physico-chemical and microbiological parameters were measured: pH, EC, TDS, turbidity, water temperature, salinity, K, Na, Ca, Mg, Cl, F, NO3, alkalinity, water hardness, Fecal coliform (FC) and Faecal Streptococci (FS) bacteria. Water quality data was compared with Malawi Bureau of Standards (MBS) and World Health Organization (WHO) guidelines for drinking water. Shallow wells were reported (65%, n = 120) to be the main source of water for household use in all areas. Some policies like prohibition of boreholes and shallow wells in City locations were in conflict with other provisions of water supply, sanitation and housing. High levels of FC (0–2100 cfu/100 mL) and FS (0–1490 cfu/100 mL) at several sites (>90%, n = 24) suggest water contamination likely to impact on human health. This calls for upgrading and recognition of the water sources for improved water service delivery.  相似文献   

10.
《Marine pollution bulletin》2012,64(5-12):528-534
The Salt-water River watershed is one of the major river watersheds in the Kaohsiung City, Taiwan. Water quality and sediment investigation results show that the river water contained high concentrations of organics and ammonia–nitrogen, and sediments contained high concentrations of heavy metals and organic contaminants. The main pollution sources were municipal and industrial wastewaters. Results from the enrichment factor (EF) and geo-accumulation index (Igeo) analyses imply that the sediments can be characterized as heavily polluted in regard to Cd, Cr, Pb, Zn, and Cu. The water quality analysis simulation program (WASP) model was applied for water quality evaluation and carrying capacity calculation. Modeling results show that the daily pollutant inputs were much higher than the calculated carrying capacity (1050 kg day−1 for biochemical oxygen demand and 420 kg day−1 for ammonia–nitrogen). The proposed watershed management strategies included river water dilution, intercepting sewer system construction and sediment dredging.  相似文献   

11.
Capillary pressure (Pc)–saturation (S)–relative permeability (kr) relationships must be quantified to accurately predict non-aqueous phase liquid (NAPL) distribution in the subsurface. Several experimental techniques are presented here for two-fluid PcSkr relationships for various saturation paths to better define the effect of fractional wettability on these relationships. During the primary drainage path of the PcS curves, the air–water system showed no distinct trend as a function of the fraction of sand treated by organosilane (S) to render it non-water wetting. In a NAPL–water system, however, a consistent decrease of capillary pressure with increase of the fraction of non-water wetting sands was observed. The much lower contact angle for air–water (a–w) system may result in the observed insensitivity of the a–w PcS curves to fractional wettability, at least for the PD pathway. For the main imbibition path of NAPL–water system, capillary pressure decreased as the fraction of the S component increased, requiring forced imbibition (negative capillary pressures) for a certain range of saturations. Systems with an increasing percentage of the S component also exhibited a higher water kr and lower NAPL or air kr at a given saturation for the primary drainage and main imbibition paths in both air–water and NAPL–water systems. The increase of water kr with increase of the fraction of the S component can be explained by the ability of water to occupy larger and highly conductive pores in such a system. Experimental krS data for the primary drainage path of NAPL–water system presented here were used to test the Bradford et al. [Bradford SA, Abriola LM, Leij FJ. Wettability effects on two- and three-fluid relative permeabilities. J Contam Hydrol 1997;28:171–91] model and the modified Mualem model for estimating the krS curves from measured PcS data as a function of fractional wettability. Both models predicted significantly less variation in the krS curves than measured indicating that they did not adequately represent the system under investigation.  相似文献   

12.
Abstract

The Dead Sea is shrinking as its water level drops at the alarming rate of about 1 m year-1. The Dead Sea is important to the economies of Israel and Jordan due to the extracted minerals (primarily potassium, also magnesium and bromide). It is also central to regional tourism. It is the lowest place on Earth and its endorheic, saline basin attracts international research in various disciplines. Additional to the Lower Jordan River, the discharge of which has been decreased to a small fraction of its original value, fresh to brackish springs are the main source of water to the rapidly dwindling Dead Sea. Although the existence of these springs has been known for decades, until recently estimates of spring water discharge into the Dead Sea were scarce. In this study, we developed a methodology of water discharge estimation for channels incising into a lacustrine bed using remotely sensed data and a single hydraulic geometry variable, water-surface width. Based on calibration of over 400 in situ measurements and simultaneous hydrometric data from aerial images, width–discharge rating curves were established, tested, and found suitable (r2 = 0.92, p = 0.001) for the estimation of water discharge, with ±5% uncertainty. Furthermore, we used these relationships to estimate retrospectively the temporal changes in water discharge of seven main channels traceable in historical aerial images. The reconstructed trend reveals a major (63%) reduction in average freshwater inflow between 1990 and 2006. Our results maximize the use of water-surface width information from aerial imagery, and suggest applicability to areas experiencing rapid exposure of sea/lake bed and consequent access difficulties in in situ discharge monitoring.
Editor Z.W. Kundzewicz  相似文献   

13.
Climate change and its impact on hydrological processes are overarching issues that have brought challenges for sustainable water resources management. In this study, surface water resources in typical regions of China are projected in the context of climate change. A water balance model based on the Fu rational function equation is established to quantify future natural runoff. The model is calibrated using data from 13 hydrological stations in 10 first-class water resources zones of China. The future precipitation and temperature series come from the ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) climate dataset. Taking natural runoff for 1961–1990 as a baseline, the impacts of climate change on natural runoff are studied under three emissions scenarios: RCP2.6, RCP4.5 and RCP8.5. Simulated results indicate that the arid and semi-arid region in the northern part of China is more sensitive to climate change compared to the humid and semi-humid region in the south. In the near future (2011–2050), surface water resources will decrease in most parts of China (except for the Liaozhong and Daojieba catchments), especially in the Haihe River Basin and the middle reaches of the Yangtze River Basin. The decrement of surface water resources in the northern part of China is more than that in the southern part. For the periods 2011–2030 and 2031–2050, surface water resources are expected to decrease by 12–13% in the northern part of China, while those in the southern part will decrease by 7–10%.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR R. Hirsch  相似文献   

14.
Hydroelectric power is an important energy source to meet the growing demand for energy, and large amounts of water are consumed to generate this energy. Previous studies often assumed that the water footprint of hydroelectric power equaled the reservoir’s water footprint, but failed to allocate the reservoir water footprint among the many beneficiaries; dealing with this allocation remains a challenge. In this study, we developed a new approach to quantify the water footprint of hydroelectric power (WFh) by separating it from the reservoir water footprint (WF) using an allocation coefficient (ηh) based on the ratio of the benefits from hydroelectric power to the total ecosystem service benefits. We used this approach in a case study of the Three Gorges Reservoir, the world’s largest reservoir, which provides multiple ecosystem services. We found large differences between the WFh and the water footprint of per unit of hydroelectric production (PWFh) calculated using ηh and those calculated without this factor. From 2003 to 2012, ηh decreased sharply (from 0.76 in 2005 to 0.41 in 2012), which was due to the fact that large increases in the value of non-energy ecosystem services, and particularly flood control. In 2009, flood control replaced hydroelectricity as the largest ecosystem service of water from the Three Gorges Reservoir. Using our approach, WFh and PWFh averaged 331.0 × 106 m3 and 1.5 m3 GJ−1, respectively. However, these values would almost double without allocating water footprints among different reservoir ecosystem services. Thus, previous studies have overestimated the WFh and PWFh of reservoirs, especially for reservoirs that serve multiple purposes. Thus, the allocation coefficient should not be ignored when calculating the WF of a product or service.  相似文献   

15.
The most important natural function of exposed sandy beaches is the filtration of large volumes of sea water which are flushed through the interstitial pore system by the actions of tides and waves. In this process organic material is mineralized by the interstitial fauna and nutrients returned to the sea. This paper examines the physical effects of oil in blocking or reducing this filtration. Reduced filtration of sea water may be caused by prevention or retardation of interstitial water flow and/or decrease in pore space. The magnitude of the effects depends on the volume of oil, its state of weathering, its location on the beach and its degree of admixture with sand. It appears that under all but the heaviest conditions of pollution these effects are relatively small and only become significant in situ when discrete layers of weathered oil occur near the surface in the upper intertidal zone where maximum water input normally occurs.  相似文献   

16.
The rate of natural removal of 137Cs from water bodies in Eastern Fennoscandia is evaluated. The half-time T of water purification from global 137Cs in lake–river systems was ~6.5 years and that for river systems was 6.5–10 years. For the 15- and 20-year exposure of 137Cs in watershed soils, its annual input in rivers was 0.021–0.120 and 0.017–0.070% of its reserve. The period of May–December 1986 showed maximal export of 137Cs, i.e., 1.1% of its reserve. 137Cs export into rivers decreased in the region from north to south because of changes in landscape and climate conditions that affect 137Cs migration on watersheds.  相似文献   

17.
Toxic and non-toxic Microcystis sp. are morphologically indistinguishable cyanobacteria that are increasingly posing health problems in fresh water systems by producing odours and/or toxins. Toxic Microcystis sp. produces toxicologically stable water soluble toxic compounds called microcystins (MCs) that have been associated with cases of aquatic life and wildlife poisoning and kills including some cases of human illnesses/deaths around the world. Thus, the need for rapid detection of toxic Microcystis sp. in surface water is imperatively a necessity for early mitigation purposes. Genomic DNA from potentially toxic Microcystis sp. comprises of ten microcystin synthetase (mcy) genes of which six major ones are directly involved in MCs biosynthesis. In Polymerase Chain Reaction (PCR) methodsmcy genes can be amplified from intracellular/extracellular genomic DNA using PCR primers. However, little is known about the limitations of sourcing genomic DNA templates from extracellular DNA dissolved in water. In this work, filtered water (0.45 μM) from a Microcystis infested Dam (South Africa) was re-filtered on 0.22 μM syringe filters followed by genomic DNA isolation and purification from micro-filtrates (9 mL). Six major mcy genes (mcyABCDEG) from the isolated DNA were amplified using newly designed as well as existing primers identified from literature. PCR products were separated by gel electrophoresis and visualized after staining with ethidium bromide. The limitation of using dissolved DNA for amplification of mcy genes was qualitatively studied by establishing the relationship between input DNA concentrations (10.0–0.001 ng/μL) and the formation of respective PCR products. The amplification of mcyA gene using new primers with as little as 0.001 ng/μL of DNA was possible. Other mcy gene sensitivities reached 0.1 ng/μL DNA dilution limits. These results demonstrated that with appropriately optimized PCR conditions the method can provide accurate cost-effective tools for rapid detection of toxic Microcystis sp. in water giving early information for water quality monitoring against MC producing cyanobacteria.  相似文献   

18.
The occidental shore of the southern tip of South America is one of the largest estuarine ecosystems around the world. Although demersal finfish fisheries are currently in full exploitation in the area, the fjords south of 47°S have been poorly investigated. Two bio-oceanographic cruises carried out in austral spring 1996 and 2008 between 47°S and 50°09′S were utilized to investigate the spatial distribution of fish eggs and larvae. Small differences in the environmental conditions were identified in the top 200 m of the water column between years (5.3–10.5 °C and 0.7–33.9 units of salinity in October 1996; 6.3–11.5 °C and 1.2–34.2 units of salinity in November 2008). The low salinity surface layer generated a highly stable water column within the fjords (Brunt–Väisälä frequency, N>0.1 rad/s; wave period <60 s), whereas a well-mixed water column occurred in the gulfs and open channels. For both years, the ichthyoplankton analysis showed that early life stages of lightfish Maurolicus parvipinnis were dominant (>75% total eggs and >70% total larvae) and they were collected throughout the area, irrespective of the water column stratification. However, other components of the ichthyoplankton such as Falkland sprat Sprattus fuegensis, rockfish Sebastes oculatus, and hoki Macruronus magellanicus were more abundant and found in a wider range of larval sizes in less stable waters (N<0.1 rad/s). Oceanic taxa such as myctophids (Lampanyctodes hectoris) and gonostomatids (Cyclothone sp.) were collected exclusively in open waters. The October 1996 observation of Engraulis ringens eggs in plankton samples corresponded to the southernmost record of early stages of this fish in the Pacific Ocean. We found a significant negative relationship between the number of larval species and N, and a significant positive relationship between the number of larval species and wave period. Therefore, only some marine fish species are capable to utilize fjords systems as spawning and nursery grounds in areas having high amounts of freshwater discharges and very high vertical stratification during austral spring season.  相似文献   

19.
《Marine pollution bulletin》2013,77(1-2):411-416
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in mullet (Liza klunzingeri), water and sediment from northern part of Hormuz strait (Persian Gulf). The concentration levels of total PAHs in L. klunzingeri, water and sediment were 133.99–268.57 ng g−1 dry weight, 3.12–5.88 ng l−1 and 42.29–228.9 ng g−1 dry weight, respectively. Based on isomer ratios, analysis of the PAHs source in the sediment demonstrated that the PAHs come from pyrogenic and petrogenic origin. Risk assessment showed PAHs threshold concentrations to occasionally be exceeded in the study area.  相似文献   

20.
Evaporation from small reservoirs, wetlands, and lakes continues to be a theoretical and practical problem in surface hydrology and micrometeorology because atmospheric flows above such systems can rarely be approximated as stationary and planar-homogeneous with no mean subsidence (hereafter referred to as idealized flow state). Here, the turbulence statistics of temperature (T) and water vapor (q) most pertinent to lake evaporation measurements over three water bodies differing in climate, thermal inertia and degree of advective conditions are explored. The three systems included Lac Léman in Switzerland (high thermal inertia, near homogeneous conditions with no appreciable advection due to long upwind fetch), Eshkol reservoir in Israel (intermediate thermal inertia, frequent strong advective conditions) and Tilopozo wetland in Chile (low thermal inertia, frequent but moderate advection). The data analysis focused on how similarity constants for the flux-variance approach, CT/Cq, and relative transport efficiencies RwT/Rwq, are perturbed from unity with increased advection or the active role of temperature. When advection is small and thermal inertia is large, CT/Cq < 1 (or RwT/Rwq > 1) primarily due to the active role of temperature, which is consistent with a large number of studies conducted over bare soil and vegetated surfaces. However, when advection is significantly large, then CT/Cq > 1 (orRwT/Rwq < 1). When advection is moderate and thermal inertia is low, then CT/Cq ∼ 1. This latter equality, while consistent with Monin–Obukhov similarity theory (MOST), is due to the fact that advection tends to increase CT/Cq above unity while the active role of temperature tends to decrease CT/Cq below unity. A simplified scaling analysis derived from the scalar variance budget equation, explained qualitatively how advection could perturb MOST scaling (assumed to represent the idealized flow state).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号