首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Solar radiation is the primary energy source for many processes in Earth's environment and is responsible for driving the atmospheric and oceanic circulation. The integrated strength and spectral distribution of solar radiation is modified from the space-based {Solar {Radiation and {Climate (SORCE) measurements through scattering and absorption processes in the atmosphere and at the surface. Understanding how these processes perturb the distribution of radiative flux density is essential in determining the climate response to changes in concentration of various gases and aerosol particles from natural and anthropogenic sources, as is discerning their associated feedback mechanisms. The past decade has been witness to a tremendous effort to quantify the absorption of solar radiation by clouds and aerosol particles via airborne and space-based observations. Vastly improved measurement and modeling capabilities have enhanced our ability to quantify the radiative energy budget, yet gaps persist in our knowledge of some fundamental variables. This paper reviews some of the many advances in atmospheric solar radiative transfer as well as those areas where large uncertainties remain. The SORCE mission's primary contribution to the energy budget studies is the specification of the solar total and spectral irradiance at the top of the atmosphere.  相似文献   

2.
The problem of interaction of the solar radiation with the turbid Earth atmosphere, containing complicated polydispersive aerosol systems, is discussed in this paper. Equations for computing the angular functions ofn-th order scattering are derived. On the basis of these functions the spectral radiance, radiation flows and radiation balance of the atmosphere in the short-wave spectral range are calculated. The relations obtained can be used to calculate the complex index of refraction, distribution function and other characteristics of the submicron aerosol fraction, by solving the inverse problems.  相似文献   

3.
The solar soft X-ray (XUV) radiation is highly variable on both short-term time scales of minutes to hours due to flares and long-term time scales of months to years due to solar cycle variations. Because of the smaller X-ray cross sections, the solar XUV radiation penetrates deeper than the extreme ultraviolet (EUV) wavelengths and thus influences the photochemistry and ionization in the mesosphere and lower thermosphere. The XUV Photometer System (XPS) aboard the Solar Radiation and Climate Experiment (SORCE) is a set of photometers to measure the solar XUV irradiance shortward of 34 nm and the bright hydrogen emission at 121.6 nm. Each photometer has a spectral bandpass of about 7 nm, and the XPS measurements have an accuracy of about 20%. The XPS pre-flight calibrations include electronics gain and linearity calibrations in the laboratory over its operating temperature range, field of view relative maps, and responsivity calibrations using the Synchrotron Ultraviolet Radiation Facility (SURF) at the National Institute of Standards and Technology (NIST). The XPS in-flight calibrations include redundant channels used weekly and underflight rocket measurements from the NASA Thermosphere-Ionosphere-Mesosphere-Energetics-Dynamics (TIMED) program. The SORCE XPS measurements have been validated with the TIMED XPS measurements. The comparisons to solar EUV models indicate differences by as much as a factor of 4 for some of the models, thus SORCE XPS measurements could be used to improve these models.  相似文献   

4.
The instrument SUMER - Solar Ultraviolet Measurements of Emitted Radiation is designed to investigate structures and associated dynamical processes occurring in the solar atmosphere, from the chromosphere through the transition region to the inner corona, over a temperature range from 104 to 2 × 106 K and above. These observations will permit detailed spectroscopic diagnostics of plasma densities and temperatures in many solar features, and will support penetrating studies of underlying physical processes, including plasma flows, turbulence and wave motions, diffusion transport processes, events associated with solar magnetic activity, atmospheric heating, and solar wind acceleration in the inner corona. Specifically, SUMER will measure profiles and intensities of EUV lines; determine Doppler shifts and line broadenings with high accuracy; provide stigmatic images of the Sun in the EUV with high spatial, spectral, and temporal resolution; and obtain monochromatic maps of the full Sun and the inner corona or selected areas thereof. SUMER will be flown on the Solar and Heliospheric Observatory (SOHO), scheduled for launch in November, 1995. This paper has been written to familiarize solar physicists with SUMER and to demonstrate some command procedures for achieving certain scientific observations.  相似文献   

5.
The Solar–Stellar Irradiance Comparison Experiment {II (SOLSTICE {II), aboard the Solar Radiation and Climate Experiment (SORCE) spacecraft, consists of a pair of identical scanning grating monochromators, which have the capability to observe both solar spectral irradiance and stellar spectral irradiance using a single optical system. The SOLSTICE science objectives are to measure solar spectral irradiance from 115 to 320 nm with a spectral resolution of 1 nm, a cadence of 6 h, and an accuracy of 5%, to determine its variability with a long-term relative accuracy of 0.5% per year during a 5-year nominal mission, and to determine the ratio of solar irradiance to that of an ensemble of bright B and A stars to an accuracy of 2%. Those objectives are met by calibrating instrument radiometric sensitivity before launch using the Synchrotron Ultraviolet Radiation Facility at the National Institute for Standards and Technology in Gaithersburg, Maryland. During orbital operations irradiance measurements from an ensemble of bright, stable, main-sequence B and A stars are used to track instrument sensitivity. SORCE was launched on 25 January 2003. After spacecraft and instrument check out, SOLSTICE {II first observed a series of three stars to establish an on-orbit performance baseline. Since 6 March 2003, both instruments have been making daily measurements of both the Sun and stars. This paper describes the pre-flight and in-flight calibration and characterization measurements that are required to achieve the SOLSTICE science objectives and compares early SOLSTICE{II measurements of both solar and stellar irradiance with those obtained by SOLSTICE {I on the Upper Atmosphere Research Satellite.  相似文献   

6.
7.
A general circulation model is used to evaluate changes to the circulation and dust transport in the martian atmosphere for a range of past orbital conditions. A dust transport scheme, including parameterized dust lifting, is incorporated within the model to enable passive or radiatively active dust transport. The focus is on changes which relate to surface features, as these may potentially be verified by observations. Obliquity variations have the largest impact, as they affect the latitudinal distribution of solar heating. At low obliquities permanent CO2 ice caps form at both poles, lowering mean surface pressures. At higher obliquities, solar insolation peaks at higher summer latitudes near solstice, producing a stronger, broader meridional circulation and a larger seasonal CO2 ice cap in winter. Near-surface winds associated with the main meridional circulation intensify and extend polewards, with changes in cap edge position also affecting the flow. Hence the model predicts significant changes in surface wind directions as well as magnitudes. Dust lifting by wind stress increases with obliquity as the meridional circulation and associated near-surface winds strengthen. If active dust transport is used, then lifting rates increase further in response to the larger atmospheric dust opacities (hence circulation) produced. Dust lifting by dust devils increases more gradually with obliquity, having a weaker link to the meridional circulation. The primary effect of varying eccentricity is to change the impact of varying the areocentric longitude of perihelion, l, which determines when the solar forcing is strongest. The atmospheric circulation is stronger when l aligns with solstice rather than equinox, and there is also a bias from the martian topography, resulting in the strongest circulations when perihelion is at northern winter solstice. Net dust accumulation depends on both lifting and deposition. Dust which has been well mixed within the atmosphere is deposited preferentially over high topography. For wind stress lifting, the combination produces peak net removal within western boundary currents and southern midlatitude bands, and net accumulation concentrated in Arabia and Tharsis. In active dust transport experiments, dust is also scoured from northern midlatitudes during winter, further confining peak accumulation to equatorial regions. As obliquity increases, polar accumulation rates increase for wind stress lifting and are largest for high eccentricities when perihelion occurs during northern winter. For dust devil lifting, polar accumulation rates increase (though less rapidly) with obliquity above o=25°, but increase with decreasing obliquity below this, thus polar dust accumulation at low obliquities may be increasingly due to dust lifted by dust devils. For all cases discussed, the pole receiving most dust shifts from north to south as obliquity is increased.  相似文献   

8.
Infrared radiation spectra of Mars which can be measured by an orbiting Planetary Fourier Spectrometer (PFS) have been simulated in the spectral region from 1 to 50 μm. The radiative transfer simulation technique considers absorption, emission and multiple scattering by molecular (CO2, H2O, CO) and particulate (palagonite) species. It is shown that the contribution from atmospheric dust extinction and surface reflectance can be separated in the region of the CO2 bands at 2.0 and 2.7 μm. Quantitative results of simultaneous surface pressure, reflectance and aerosol optical depth retrievals are discussed.  相似文献   

9.
Temporal variations of the Martian ozone density profile at high latitudes have been calculated for an entire Martian year, taking into account the seasonal and diurnal variations in temperature, water vapor and solar radiation. A new technique facilitates the long-term model calculations, including diurnal variations. The result is in better agreement with MARINER 9 observations of the time and magnitude of the seasonal maximum than is the result of the previous seasonal model calculated for the diurnally averaged temperature, water vapor and solar radiation. The large scatter of the MARINER 9 data may be partly experimental, but the effect of surface condition, including the water vapor variability and the surface chemistry, may explain some of the dispersion of the observed data. The predicted diurnal variation is substantial except near solstices, and the nighttime total column density is generally larger than the daytime value. The magnitude of the day-and-night difference and the shape of the diurnal variation change markedly with season. The opposite temporal variation is predicted for ozone density between the upper and lower regions. The model predicts the production of a ozone layer at 35–50 km, which is consistent with observations at low latitudes by MARS-5. The observed ozone density may be explained, if the atmospheric temperature is as low as ~ 140 K or if the atmosphere is subsaturated. Effects of the simultaneous existence of an aerosol layer, also observed by MARS-5, are briefly discussed.  相似文献   

10.
Among the observed circumstellar dust envelopes a certain population, planetary debris disks, is ascribed to systems with optically thin dust disks and low gas content. These systems contain planetesimals and possibly planets and are believed to be systems that are most similar to our solar system in an early evolutionary stage. Planetary debris disks have been identified in large numbers by a brightness excess in the near-infrared, mid-infrared and/or submillimetre range of their stellar spectral energy distributions. In some cases, spatially resolved observations are possible and reveal complex spatial structures. Acting forces and physical processes are similar to those in the solar system dust cloud, but the observational approach is obviously quite different: overall spatial distributions for systems of different ages for the planetary debris disks, as opposed to detailed local information in the case of the solar system. Comparison with the processes of dust formation and evolution observed in the solar system therefore helps understand the planetary debris disks. In this paper, we review our present knowledge of observations, acting forces, and major physical interactions of the dust in the solar system and in similar extra-solar planetary systems.  相似文献   

11.
Observational evidence and theoretical predictions of the response of ozone to solar variations are reviewed. Short-term solar proton effects, possible effects of galactic cosmic rays modulated by the Sun, and the effects of 27-day solar rotation and 11-year solar cycle variations are discussed. Solar proton effects on HO x chemistry in the mesosphere and NO x chemistry in the stratosphere with resulting catalytic destruction of O3 help validate present day photochemical models. If there is an 11-year solar cycle variation in global ozone, the large dynamical effects at individual locations and the lack of good global coverage of ground based and in situ measurements can disguise it. Recently, with the global coverage of satellites, it has become possible to accurately determine global mean ozone. It has been found that variations in global mean ozone filtered for seasonal variations are highly correlated with variations of the 10.7 cm solar activity index and that global mean ozone responds rapidly to solar activity index variations. Photochemical models indicate that the observed 3% variations in global mean ozone over the solar cycle can be accounted for by solar UV variations which are not inconsistent with recent solar measurements.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

12.
Spectral properties, magnetic fields, and dust transport at lunar swirls   总被引:1,自引:0,他引:1  
Lunar swirls are albedo anomalies associated with strong crustal magnetic fields. Swirls exhibit distinctive spectral properties at both highland and mare locations that are plausibly explained by fine-grained dust sorting. The sorting may result from two processes that are fairly well established on the Moon, but have not been previously considered together. The first process is the vertical electrostatic lofting of charged fine dust. The second process is the development of electrostatic potentials at magnetic anomalies as solar wind protons penetrate more deeply into the magnetic field than electrons. The electrostatic potential can attract or repel charged fine-grained dust that has been lofted. Since the finest fraction of the lunar soil is bright and contributes significantly to the spectral properties of the lunar regolith, the horizontal accumulation or removal of fine dust can change a surface’s spectral properties. This mechanism can explain some of the spectral properties of swirls, accommodates their association with magnetic fields, and permits aspects of weathering by micrometeoroids and the solar wind.  相似文献   

13.
Temporal variations in the visible/near-infrared reflectance spectra of the radiometric calibration targets on the Mars Pathfinder (MPF) lander obtained by the Imager for Mars Pathfinder (IMP) camera reveal the effects of aeolian dust deposition at the MPF site throughout the mission. Sky brightness models in combination with two-layer radiative transfer models were used with these data to track changes in dust opacity on the radiometric calibration targets (RCTs) to constrain the dust deposition rate and the spectral properties of the deposited dust. Two-layer models were run assuming both linear and nonlinear dust accumulation rates, and suggest that RCT dust optical depth at the end of the 83-sol mission was 0.08 to 0.16, or on the order of 5- to 10-μm thickness for plausible values for dust porosity and grain size. These values correspond to dust fall rates of about 20-45 μm per Earth year, consistent with previous studies of dust deposition on Mars. The single scattering albedos of the dust derived from the models fall between those previously determined for atmospheric dust and bright soils. Comparisons of relative reflectance spectra calibrated using observed RCT radiances from late in the mission versus using radiances from modeled (dust-free) RCTs also reveal distinct spectral differences consistent with dust on the RCTs. Temporal variations in RCT dust opacity are not clearly linked to known passages of vortices at the MPF site, but overall suggest that deposition of dust onto the targets by local dust devils may be favored over erosion. Analyses of temporal changes in visible/near-infrared spectra will provide valuable information for future missions by constraining how dust deposition affects landed spacecraft operability (e.g., solar power availability), instrument calibration, and interpretations of surface mineralogy and composition.  相似文献   

14.
The Solar–Stellar Irradiance Comparison Experiment II (SOLSTICE II) is one of four experiments launched aboard the Solar Radiation and Climate Experiment (SORCE) on 25 January, 2003. Its principal science objectives are to measure solar spectral irradiance from 115 to 320 nm with a spectral resolution of 1 nm, a cadence of 6 h, and an accuracy of 5% and to determine solar variability with a relative accuracy of 0.5% per year during a 5-year long nominal mission. SOLSTICE II meets these objectives using a pair of identical scanning grating monochromators that can measure both solar and stellar irradiance. Instrument radiometric responsivity was calibrated to ∼3% absolute accuracy before launch using the Synchrotron Ultraviolet Radiation Facility (SURF) at the National Institute for Standards and Technology (NIST) in Gaithersburg, MD. During orbital operations, SOLSTICE II has been making daily measurements of both the Sun and an ensemble of bright, stable, main-sequence B and A stars. The stellar measurements allow the tracking of changes in instrument responsivity with a relative accuracy of 0.5% per year over the life of the mission. SOLSTICE II is an evolution of the SOLSTICE i instrument that is currently operating on the Upper Atmosphere Research Satellite (UARS). This paper reviews the basic SOLSTICE concept and describes the design, operating modes, and early performance of the SOLSTICE II instrument.  相似文献   

15.
The “mass loading” of the solar wind by cometary ions produced by the photoionization of neutral molecules outflowing from the cometary nucleus plays a major role in the interaction of the solar wind with cometary atmospheres. In particular, this process leads to a decrease in the solar wind velocity with a transition from supersonic velocities to subsonic ones through the bow shock. The so-called single-fluid approximation, in which the interacting plasma flows are considered as a single fluid, is commonly used in modeling such an interaction. However, it is occasionally necessary to know the distribution of parameters for the components of the interacting plasma flows. For example, when the flow of the cometary dust component in the interplanetary magnetic field is considered, the dust particle charge, which depends significantly on the composition of the surrounding plasma, needs to be known. In this paper, within the framework of a three-dimensional magnetohydrodynamic model of the solar wind flow around cometary ionospheres, we have managed to separately obtain the density distributions of solar wind protons and cometary ions between the bow shock and the cometary ionopause (in the shock layer). The influence of the interplanetary magnetic field on the position of the point of intersection between the densities with the formation of a region near the ionopause where the proton density is essentially negligible compared to the density of cometary ions is investigated. Such a region was experimentally detected by the Vega-2 spacecraft when investigating Comet Halley in March 1986. The results of the model considered below are compared with some experimental data obtained by the Giotto spacecraft under the conditions of flow around Comets Halley and Grigg–Skjellerup in 1986 and 1992, respectively. Unfortunately, our results of calculations on Comet Churyumov–Gerasimenko are only predictive in character, because the trajectory of the Rosetta spacecraft, which manoeuvred near its surface for several months, is complex.  相似文献   

16.
We present new observations of O vi 1032 Å line profiles in polar plumes, and inter-plume regions, on the disk and above the limb in the north coronal hole obtained with the SUMER (Solar Ultraviolet Measurements of Emitted Radiation) instrument on the SOHO (Solar and Heliospheric Observatory) spacecraft. On 22 May 1996, a 5 x 5 arc min spectroheliogram was scanned above the north polar coronal hole with the entrance slit extending from 1.03 to 1.33 solar radii with 1.5 arc sec spatial resolution and ≈ 0.044 Å per pixel spectral resolution in the wavelength range 1020–1040 Å. Detailed plume structure in O vi 1032 Å can be seen extending beyond 1.3 solar radii, with intensities in the plume regions 10–50% brighter, but line widths 10–15% narrower, than the inter-plume regions. Possible explanations for this observed anti-correlation between line width and intensity in the plume and inter-plume regions are discussed. We conclude that the source of the high-speed solar wind may not be polar plumes, but the inter-plume lanes associated with open magnetic field regions of the chromospheric network.  相似文献   

17.
Haber  D.A.  Hindman  B.W.  Toomre  J.  Bogart  R.S.  Thompson  M.J.  Hill  F. 《Solar physics》2000,192(1-2):335-350
We report on large-scale horizontal flows in the solar convection zone and their variability in time and space using a local-helioseismology technique known as ring-diagram analysis. By performing this analysis on a dense mosaic of individual regions on the solar disk, i.e., a `Dense-Pack' sampling, and repeating the analysis periodically on several time scales, we are able to assess the variation of horizontal flows from day-to-day, week-to-week, and year-to-year. We find that although there are changes in the flows on all these time scales, there are also basic patterns that persist. On a daily time scale we observe that the flow is reduced in those areas which are occupied by large active regions. On somewhat longer time-scales we see bands of persistent fast and slow zonal flow that are identifiable as torsional oscillations. As we examine these bands during a series of years, we find that these bands migrate toward the equator as solar activity increases. Similarly, the latitudes at which the meridional flow reaches maximum follow these regions of fast zonal flow as they migrate equatorwards. These Dense-Pack samplings also reveal substantial differences in the zonal and meridional flow patterns in the northern and southern hemispheres.  相似文献   

18.
The Solar–Stellar Irradiance Comparison Experiment (SOLSTICE) and the Spectral Irradiance Monitor (SIM) on the Solar Radiation and Climate Experiment (SORCE) both measure the solar ultraviolet irradiance surrounding the Mg II doublet at 280 nm on a daily basis. The SIM instrument's resolution (1.1 nm) is similar to the Solar Backscatter Ultraviolet instruments used to compute the standard NOAA Mg II index, while SOLSTICE's resolution is an order of magnitude higher (0.1 nm). This paper describes the technique used to calculate the index for both instruments and compares the resulting time series for the first 18 months of the SORCE mission. The spectral resolution and low noise of the SOLSTICE spectrum produces a Mg II index with a precision of 0.6%, roughly a factor of 2 better than the low-resolution index measurement. The full-resolution SOLSTICE index is able to measure short-timescale changes in the solar radiative output that are lost in the noise of the low-resolution index.  相似文献   

19.
Wilhelm  K.  Lemaire  P.  Curdt  W.  Schühle  U.  Marsch  E.  Poland  A. I.  Jordan  S. D.  Thomas  R. J.  Hassler  D. M.  Huber  M. C. E.  Vial  J.-C.  Kühne  M.  Siegmund  O. H. W.  Gabriel  A.  Timothy  J. G.  Grewing  M.  Feldman  U.  Hollandt  J.  Brekke  P. 《Solar physics》1997,170(1):75-104
SUMER – the Solar Ultraviolet Measurements of the Emitted Radiation instrument on the Solar and Heliospheric Observatory (SOHO) – observed its first light on January 24, 1996, and subsequently obtained a detailed spectrum with detector B in the wavelength range from 660 to 1490 Å (in first order) inside and above the limb in the north polar coronal hole. Using detector A of the instrument, this range was later extended to 1610 Å. The second-order spectra of detectors A and B cover 330 to 805 Å and are superimposed on the first-order spectra. Many more features and areas of the Sun and their spectra have been observed since, including coronal holes, polar plumes and active regions. The atoms and ions emitting this radiation exist at temperatures below 2 × 106 K and are thus ideally suited to investigate the solar transition region where the temperature increases from chromospheric to coronal values. SUMER can also be operated in a manner such that it makes images or spectroheliograms of different sizes in selected spectral lines. A detailed line profile with spectral resolution elements between 22 and 45 mÅ is produced for each line at each spatial location along the slit. From the line width, intensity and wavelength position we are able to deduce temperature, density, and velocity of the emitting atoms and ions for each emission line and spatial element in the spectroheliogram. Because of the high spectral resolution and low noise of SUMER, we have been able to detect faint lines not previously observed and, in addition, to determine their spectral profiles. SUMER has already recorded over 2000 extreme ultraviolet emission lines and many identifications have been made on the disk and in the corona.  相似文献   

20.
The plasma conditions in the solar atmosphere and, in particular, in coronal holes are summarized, before space-borne instrumentation for observing these regions in vacuum-ultraviolet light is briefly introduced with the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) spectrometer on the Solar and Heliospheric Observatory (SOHO) as example. Spectroscopic measurements of small plasma jets are then analyzed in detail. Magnetic reconnection is thought to be responsible for heating the corona of the Sun as well as accelerating the solar wind by converting magnetic energy into thermal and kinetic energies. The continuous outflow of the fast solar wind from coronal holes on ‘open’ field lines, which reach out into interplanetary space, then requires many reconnection events of very small scale sizes – most of them probably below the resolution capabilities of present-day instruments. Our observations of such an event have been obtained with the Solar and Heliospheric Observatory (SOHO) providing both high-resolution imaging and spectral information for structural and dynamical studies. We find whirling or rotating motions as well as jets with acceleration along their propagation paths in close spatial and temporal vicinity to the coronal jet. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号