首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The stationary response of base-isolated buildings subjected to earthquake excitation is studied. The frequency content of earthquake input is described by the Clough-Penzien spectral model. The response parameters of interest are (1) the root-mean-square (RMS) displacement σx of the basement relative to the foundation (i.e. shear deformation of the isolation system) and (2) the ratio (σaa0) of the RMS value of the absolute acceleration at the roof of the isolated structure over the corresponding value when the isolation system is locked. The variation of these response parameters with the effective frequency f0 of the base-isolated structure is investigated. As input, earthquakes with moment magnitudes M = 7-3 and M = 6-0 are considered. The acceleration spectra corresponding to these two earthquake sizes have pronouncedly different frequency content over the frequency range 0–1-1–0 Hz which is of primary importance for base-isolated structures. An important conclusion that comes from these analyses is that confidence in the effectiveness of a base-isolated system should be based primarily on its capacity to absorb/dissipate energy and less on its influence in shifting the fundamental period of the structure out of the range of dominant earthquake energy.  相似文献   

2.
A systematic study is made of the effects of seismic impacts between the base of an isolated building and the surrounding retaining wall. The analysis is performed without using gap elements or assuming values of the coefficient of restitution and the duration of impact. The analysis captures the effects of wave travel along the height of the building and of the associated energy loss. It poses no numerical difficulties. Results show that for elastic systems the base shear generated by impacts can be higher than the weight of the building; base shear increases with increase in the stiffness of the retaining wall, stiffness of the building and the mass of the base mat. A significant fraction of the initial kinetic energy of the system is lost by impacts; energy loss increases with increase in the stiffness of the retaining wall, system damping and mass of the base mat. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
Seismic isolation technique is increasingly used both for the design of new buildings and for the seismic retrofit of existing buildings. Nevertheless, so far, little attention has been paid on the collapse capacity of these structures, mainly because it requires refined nonlinear models and careful consideration of different sources of uncertainties. To fill this gap, a set of collapse fragility functions for existing reinforced concrete-frame buildings, designed for gravity loads only and then retrofitted with different isolation systems (including rubber-based and friction-based isolation systems), are derived in this study. For completeness, buildings with low and high seismic resistance are also considered. Collapse fragility functions are derived through incremental dynamic analysis, considering different collapse conditions both for isolation system and superstructure. For each case study building, mean and dispersion values are obtained considering both aleatory and epistemic uncertainties, due to record-to record and model variability, respectively. Finally, some comments on the possible use of the results of this study for practical applications are made.  相似文献   

4.
基础隔震结构全寿命费用研究   总被引:2,自引:0,他引:2  
近年来,隔震结构初期投入与将来可能的损失成为工程各界关注的焦点,本文详细分析了隔震结构全寿命费用的组成,建立了适合于初步估计和详细计算的基础隔震结构初始造价共性和个性评估模型;分析了隔震结构检查维护费用的计算方法;给出了隔震结构失效损失费用的组成及计算方法;最终得出全寿命周期的总费用评估模型.算例分析结果表明:虽然隔震...  相似文献   

5.
Base isolation has become a widely applied technique for protecting buildings located in highly seismic areas. Due to the strongly non-linear constitutive behaviour typical of many isolation devices, the seismic response of base-isolated buildings is usually evaluated through non-linear dynamic analysis. In this type of analysis a suitable set of ground motions is needed for representing the earthquake loads and for exciting the structural model. Many methods can be found in the literature for defining the ground motions. When natural accelerograms are used, the methods mainly differ from each other based on the intensity measures used for scaling the records to the defined earthquake intensity level. Investigations have been carried out for evaluating the predictive capability of the intensity measures used in these methods: while many studies focused on ordinary buildings, only a few focused on base-isolated ones. The objective of this paper is to evaluate the most commonly used intensity measures, which are currently available in the literature, with respect to their capability to predict the seismic response of base-isolated buildings. Selected for the investigation are two frame structures characterized by a different number of storeys and base-isolated with systems having different properties. Two sets of accelerograms, consisting of ordinary and pulse-like near-fault records, are used in the analyses and in the evaluation of the intensity measures. Modified versions of existing intensity measures are also proposed, with the intent of improving the correlations between the considered intensity measures and response quantities.  相似文献   

6.
This paper presents a new approach for the evaluation of accurate lateral force distributions for the Linear Static Analysis (LSA) of Base Isolated (BI-) buildings. In essence, the proposed lateral force distributions depend on a factor measuring the degree of non- linearity of the Isolation System (IS) and on the ratio between the effective period of the BI-structure (Tis) and the fundamental period of the Fixed Based (FB-) structure (Tfb). The proposed approach is fully compatible with the Direct Displacement-Based Design (DDBD) method, recently developed by Priestley and co-workers. The proposed lateral force distributions have been derived from the results of a large number of Nonlinear Time-History Analyses (NTHA), carried out on six numerical models of multi-storey buildings, differing in storey number (3, 5 and 8, respectively) and fundamental period of vibration (from 0.25 to 0.8 s) in the fixed-base configuration. A great variety of Isolation Systems (ISs), characterised by either Elasto-Plastic with Hardening (EPH) or Flag-Shaped (FS) force-displacement behaviour, have been considered in the NTHA. The numerical parameters of the IS models have been varied in such a way as to reproduce the actual mechanical behaviour of the main currently used ISs, including: (i) Lead Rubber Bearings (LRB), (ii) High-Damping Rubber Bearings (HDRB), (iii) Friction Pendulum Bearings (FPB), (iv) combinations of flat Sliding Bearings (SB) and Low-Damping Rubber Bearings (LDRB) and (v) Combinations of flat SB and re-centring devices based on Shape Memory Alloys (SMA). Comparisons between the storey shear forces derived with the proposed method and those obtained from NTHA clearly show the great improvements in the accuracy of LSA predictions, when using the proposed lateral force distributions.  相似文献   

7.
基础隔震结构对随机激励的响应分析   总被引:7,自引:0,他引:7  
利用过滤白噪声地震动模型,对基础隔震结构进行了随机反应分析。建立了基础隔震结构的运动方程,推导了基础隔震结构位移、加速度对地面随机激励的传递函数表达式,计算了隔震结构与非隔震结构的均方根反应比值。讨论了基础隔震结构主要参数对结构反应的影响。  相似文献   

8.
本文研究土与结构相互作用(SSI)对多层及中高层基础隔震建筑地震需求及隔震效率的影响规律,隔震层采用LRB铅芯橡胶与LNR普通橡胶隔震支座组合,就我国现行《建筑抗震设计规范》(GB50011-2010)中软土场地设置隔震层问题做探讨。提出土与基础隔震结构相互作用的简化计算模型,对不同场地及隔震设计目标下的多层及中高层基础隔震结构进行时程分析。研究表明:软土场地基础隔震建筑隔震层的有效隔震效率相对于硬土场地有所下降,必须通过设置具有一定规格的LRB支座来满足隔震目标。本文给出了铅芯橡胶支座极限变形需求随建筑层高及隔震目标变化的规律。  相似文献   

9.
This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER-level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.  相似文献   

10.
The problem of the through-soil coupling of structures has puzzled the researchers in the field for a long while, especially regarding the varied performance of identical, adjacent buildings in earthquakes. The phenomenon of structure-soil-structure interaction (SSSI) that has often been overlooked is recently being recognized: The possible effects in urban regions are yet to be thoroughly quantified. In this respect, the goal of this work was to rigorously investigate the interacting effects of adjacent buildings in a two-dimensional setting. Detailed finite element models of 5-, 15-, and 30-story structures, realistically designed, were used in forming building clusters on the viscoelastic half-space. Perfectly matched layers were used to properly define the half-space boundaries. The interaction of the structure and the soil medium because of the presence of spatially varying ground motion on the boundary of excavated region was considered. The effects of the foundation material and the distance between adjacent buildings on the structural behavior of the neighboring buildings were investigated using drift ratios and base shear quantities as the engineering demand parameters of interest. The effects of SSSI, first investigated in the frequency domain, was then quantified in the time domain using suites of appropriate ground motions in accordance with the soil conditions, and the results were compared with the counterpart SSI solution of a single building. The results showed that, for identical low-rise structures, the effects of SSSI were negligible. Yet, neglecting SSSI for neighboring closely spaced high-rise structures or building clusters with a large stiffness contrast was shown to lead to a considerable underestimation of the true seismic demands even compared with solutions obtained using the rigid base assumption.  相似文献   

11.
The accurate analysis of the seismic response of isolated structures requires incorporation of the flexibility of supporting soil.However,it is often customary to idealize the soil as rigid during the analysis of such structures.In this paper,seismic response time history analyses of base-isolated buildings modelled as linear single degree-of-freedom(SDOF) and multi degree-of-freedom(MDOF) systems with linear and nonlinear base models considering and ignoring the flexibility of supporting soil are conducted.The flexibility of supporting soil is modelled through a lumped parameter model consisting of swaying and rocking spring-dashpots.In the analysis,a large number of parametric studies for different earthquake excitations with three different peak ground acceleration(PGA) levels,different natural periods of the building models,and different shear wave velocities in the soil are considered.For the isolation system,laminated rubber bearings(LRBs) as well as high damping rubber bearings(HDRBs) are used.Responses of the isolated buildings with and without SSI are compared under different ground motions leading to the following conclusions:(1) soil flexibility may considerably influence the stiff superstructure response and may only slightly influence the response of the flexible structures;(2) the use of HDRBs for the isolation system induces higher structural peak responses with SSI compared to the system with LRBs;(3) although the peak response is affected by the incorporation of soil flexibility,it appears insensitive to the variation of shear wave velocity in the soil;(4) the response amplifications of the SDOF system become closer to unit with the increase in the natural period of the building,indicating an inverse relationship between SSI effects and natural periods for all the considered ground motions,base isolations and shear wave velocities;(5) the incorporation of SSI increases the number of significant cycles of large amplitude accelerations for all the stories,especially for earthquakes with low and moderate PGA levels;and(6) buildings with a linear LRB base-isolation system exhibit larger differences in displacement and acceleration amplifications,especially at the level of the lower stories.  相似文献   

12.
铅芯橡胶支座基础隔震体系参数优化配置研究   总被引:9,自引:0,他引:9  
探讨了铅芯橡胶支座胶支座(LRB)用于基础隔震体系时参数的优化配置问题,对一算例采用非线性时程分析法研究了不同地震波激励下的地震反应。结果表明,对于具体工程控震指标要求,可以通过优选LRB参数来实现。  相似文献   

13.
目前国内外已修建完成了大量隔震建筑,但仅有少量经受了地震检验,绝大部分隔震结构减震能力能否达到设计目标尚存疑问.本文针对基础隔震建筑,提出了一种基于自由振动响应的减震能力评估方法.首先,对隔震建筑进行多级幅值初位移自由振动原位试验,获取结构的抗震能力曲线;其次,根据地震反应谱建立地震需求曲面,进而确定隔震结构性能点;最...  相似文献   

14.
Ground motions affected by directivity focusing at near-field stations contain distinct pulses in acceleration, velocity, and displacement histories. For the same Peak Ground Acceleration (PGA) and duration of shaking, ground motions with directivity pulses can generate much higher base shears, inter-storey drifts, and roof displacements in high-rise buildings as compared to the 1940 El Centro ground motion which does not contain these pulses. Also, the ductility demand can be much higher and the effectiveness of supplemental damping lower for pulse-like ground motions. This paper presents a simple interpretation of the response characteristics of three recorded and one synthetic near-field ground motions. It is seen that for pulse-like ground motions—similar to any other ground motion—the Peak values of Ground Acceleration, Velocity, and Displacement (PGA, PGV and PGD) are the key response parameters. Near-field ground motions with directivity effects tend to have high PGV/PGA ratio, which dramatically influences their response characteristics. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
The dynamic responses of tall civil structures due to earthquakes are very important to the civil engineer. These dynamic responses can produce situations that can range from uncomfortable to unsafe for the building occupants. In recent years classical control theory has been used in civil engineering to reduce the dynamic responses of tall civil structures. Most optimal control algorithms for civil structures involve full state feedback control which requires good estimates of the velocity and displacements throughout the structure. However, there are several important advantages of output feedback control: it takes less computational effort and it has the robustness of passive systems. In this paper, optimal control algorithms are formulated for the optimization of feedback gains and controller placement for building structures. The fundamental basis for these algorithms is the calculation of the gradient of the performance function with respect to the gain matrix. The effectiveness of the algorithm is demonstrated for deterministic earthquake loads in the time domain. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
In the last decade, two tall buildings in Singapore were instrumented with accelerometers and anemometers for the original purpose of identifying the characteristics and effects of wind loading. During the monitoring it became clear that the largest acceleration responses should result from ground motions due to earthquakes having magnitudes between 6 and 8 and epicentres at least 350 km distant. The paper describes the strategy for identifying and capturing the signals from distant tremors, which depends on tracking the RMS response levels in the second vibration mode. Characteristics of some recorded signals are given. While response levels are generally small, the frequency content coincides with the range of fundamental mode frequencies for high rise residential buildings. The validity of using a tall building as a ‘weak‐motion’ seismograph is discussed by considering the mode shape of the building and the measured transfer function between basement and roof responses. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
By now, it is well known that long‐period surface waves can induce resonant response in high‐rise buildings, in particular those located in sedimentary basins. Rayleigh wave passage has been reported to induce rocking motion at the base of the buildings which can increase displacement demands significantly. However, the building behavior to base rocking has not been extensively studied because commercially available instruments do not record rotational components of ground motion, and thus, rocking time histories have not been available to the analysts. In a recent study, we proposed an effective method for estimating the rocking associated with Rayleigh waves, which takes into account their frequency‐dependent phase velocities. In the present work, we select a number of recorded seismic motions which include surface waves on sedimentary basins from recent well‐recorded earthquake events. Then, we proceed to identify and extract the recorded surface waves by using the technique mentioned above. Using realistic soil‐structure analytical models that have been proposed in the published literature for high‐rise buildings, we study their response to Rayleigh waves as they respond to both translational and rocking motions. Of particular interest is to compare the response of such structures with and without the presence of rotational motions due to surface waves. Using the roof displacement and the building interstory drift as response quantities, our results indicate that demands are controlled by rotational (rocking) motions associated with Rayleigh waves.  相似文献   

18.
The simplest form of input required for step-by-step simulation of response of a structure to a gusty wind is a stochastic process having Gaussian distribution and a specified power spectrum. Methods for generating such a process are described in detail, and the extension outlined for generating a number of partially correlated input processes having specified power spectra and cross-spectra.  相似文献   

19.
A scheme is proposed to calculate the effect of torsion on each lateral load resisting element of asymmetrical buildings in the context of the response spectrum technique. The scheme consists of: (i) Obtain the modal shear and torque on the building by the response spectrum technique, (ii) Compute the total modal shear forces on each frame by resolving the modal shear and torque on the building according to principles of structural mechanics. The shears on each frame due to the lateral load effect and torsional effect are combined algebraically, (iii) Obtain the total shear force on each frame by combining the total modal shears on that frame in a root sum square manner. Since the proper phase relationship between the lateral load effect and torsional effect is accounted for on a modal basis, it is believed that the proposed scheme provides a more realistic load estimate on the frames than the conventional approach. An example of a simplified mono-symmetrical frame structure is chosen to illustrate the accuracy of the proposed scheme, using dynamic time-history analysis as a standard for comparison.  相似文献   

20.
Some ad hoc studies are reported which investigated the use of added damping layers at the base of a wind-tunnel model of a chimney as a means of increasing its overall structural damping. Significant increases in the logarithmic decrement were obtained from decaying free-vibration tests and in subsequent wind-tunnel tests corresponding decreases in wind-excited tip response were measured. It was concluded that the technique is promising for wind-tunnel parametric studies in which significant changes in the structural damping are required and recommends further work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号