首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Rock formations in Glutenite reservoirs typically display highly variable lithology and permeability, low and complex porosity, and significant heterogeneity. It is difficult to predict the pathway of hydraulic fractures in such rock formations. To capture the complex hydraulic fractures in rock masses, a numerical code called Rock Failure Process Analysis (RFPA2D) is introduced. Based on the characteristics of a typical Glutenite reservoir in China, a series of 2D numerical simulations on the hydraulic fractures in a small-scale model are conducted. The initiation, propagation and associated stress evolution of the hydraulic fracture during the failure process, which cannot be observed in experimental tests, are numerically simulated. Based on the numerical results, the hydraulic fracturing path and features are illustrated and discussed in detail. The influence of the confining stress ratio, gravel sizes (indicated by the diameter variation), and gravel volume content (VC) on the hydraulic fracturing pattern in a conglomerate specimen are numerically investigated, and the breakdown pressure is quantified as a function of these variables. Five hydraulic fracturing modes are identified: termination, deflection, branching (bifurcation), penetration, and attraction. The propagation trajectory of the primary hydraulic fractures is determined by the maximum and minimum stress ratios, although the fracturing path on local scales is clearly influenced by the presence of gravels in the conglomerate, particularly when the gravels are relatively large. As the stress ratio increases, the fractures typically penetrate through the gravels completely rather than propagating around the gravels, and the breakdown pressure decreases with increasing stress ratio. Furthermore, the breakdown pressure is affected by the size and volume content of the gravel in the conglomerate: as the gravel size and volume content increase, the breakdown pressure increases.  相似文献   

2.
Summary Laboratory model test results for permanent settlement of a shallow square foundation supported by geogrid-reinforced sand and subjected to cyclic loading are presented. During the application of the cyclic load, the foundation was subjected to a sustained static load. Tests were conducted with only one type of geogrid and at one relative density of compaction of sand. Based on the model test results, the nature of variation of the permanent settlement of the foundation with the intensity of the static loading and the amplitude of the cyclic load intensity are presented in a non-dimensional form.  相似文献   

3.
Penetration test has been a promising technique for characterizing the surface strength of a crusted surface. This paper presents an experimental and numerical investigation of using a flat-ended penetrometer to evaluate the surface strength of mine tailings (MT) treated with biopolymer solutions of different concentrations. The experimental results show that the infiltration depth of biopolymer solution into dry MT decreases with the increase in biopolymer concentration. Biopolymer stabilization effectively increases the surface strength and cracking resistance of MT, and the increase is greater when the biopolymer concentration is higher. To further explore how biopolymer stabilization increases the surface strength and crack resistance of MT, numerical simulations using discrete element method were carried out to study the penetration tests on MT treated with biopolymer solutions of different concentrations. The simulation results show that the inter-particle tensile and shear strengths both increase with higher biopolymer concentration, indicating that more biopolymer induces larger inter-particle bonding and thus increases the surface strength of MT. The simulation results also confirm the delayed formation of cracks on MT after biopolymer stabilization from a microscale perspective, leading to a better understanding of biopolymer stabilization of MT.  相似文献   

4.
5.
The geothermal use of concrete geostructures (piles, walls and slabs) is an environmentally friendly way of cooling and heating buildings. With such geothermal structures, it is possible to transfer energy from the ground to fluid‐filled pipes cast in concrete and then to building environments. To improve the knowledge in the field of geothermal structures, the behaviour of a pile subjected to thermo‐mechanical loads is studied in situ. The aim is to study the increased loads on pile due to thermal effects. The maximum thermal increment applied to the pile is on the order of 21°C and the mechanical load reached 1300 kN. Coupled multi‐physical finite element modelling is carried out to simulate the observed experimental results. It is shown that the numerical model is able to reproduce the most significant thermo‐mechanical effects. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

6.
Summary The significance of prefailure joint dilatancy is investigated by means of a simple analysis of a single span beam. The beam is modelled as a number of discrete blocks separated by vertical joints. The compliance of the system is concentrated at these joints which have dilatant shear behaviour. As well as showing how dilatant behaviour generates an axial thrust, which tends to suppress the tensile forces due to bending effects, it is shown that the phenomenon might provide an explanation for some observations of stresses in the roof of an underground mine.  相似文献   

7.
An idealized convecting mantle with internal heat generation and viscosity dependent on temperature and pressure is examined with numerical calculations. Temperature and viscosity are coupled and self-regulating in the quasi-steady solutions. The lack of any tendency for upwelling flow to constrict itself to narrow channels argues against the existence of plumes. Unsteadiness is an essential feature of mantle convection, not only for mixing at large Rayleigh numbers, but also to prevent the flow from being impeded by continuous rigid regions.  相似文献   

8.
Consolidation of sensitive clays: a numerical investigation   总被引:1,自引:1,他引:0  
Consolidation of sensitive clay layers, which have significant compressibility at different stress states, is investigated via a nonlinear one-dimensional consolidation approach with a piecewise linear e ~ log10σ′ model. The behaviour of sensitive clays during consolidation and the limitations of conventional consolidation theory are addressed. It is shown that (1) the sensitive clay layer can be divided by the preconsolidation pressure into two zones, that is, high- and low-compressibility zones. The progressive destruction of particle cementation bonding through the soil layer is shown by the moving front of the interface between these two zones; (2) the excess pore pressure dissipation primarily takes place in the low-compressibility zone, which results in a small settlement during the early stages of consolidation; (3) conventional consolidation theory highly overestimates the settlement and gives a poor prediction of effective stress distribution.  相似文献   

9.
The mechanical behavior of granular materials is characterized by strong nonlinearity and irreversibility. These properties have been differently described by a variety of constitutive models. To test any constitutive model, experimental data relative to the nature of the incremental stress–strain response of the material is desirable. However, this type of laboratory data is scarce because of being expensive and difficult to obtain. The discrete element method has been used several times as an alternative to obtain incremental responses of granular materials. Crushable grains add one extra source of irreversibility to granular materials. Crushability has been variously incorporated into different constitutive models. Again, it will be helpful to obtain incremental responses of crushable granular materials to test these models, but the experimental difficulties are increased. Making use of a recently introduced crushing model for discrete element simulation, this paper presents a new procedure to obtain incremental responses in discrete analogs of granular crushable materials. The parallel probe approach, previously used for uncrushable discrete analogs, is here extended to account for the presence of crushable grains. The contribution of grain crushing to the incremental irreversible strain is identified and separately measured. Robustness of the proposed method is examined in detail, paying particular attention to aspects such as dynamic instability or crushing localization. The proposed procedure is later applied to map incremental responses of a discrete analog of Fontainebleau sand on the triaxial plane. The effect of stress ratio and granular state on plastic flow characteristics is highlighted. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
Three-dimensional surface crack initiation and propagation in two kinds of heterogeneous rocks were numerically investigated via parallel finite element analysis using a supercomputer. Numerically simulated rock specimens containing a pre-existing flaw were subjected to uniaxial compression until failure. The initiation and propagation of wing cracks, anti-wing cracks, and shell-like cracks were reproduced by numerical simulations. The numerically simulated results demonstrate that the further propagation of wing cracks and shell-like cracks stop due to their wrapping (curving) behavior in three-dimensional spaces, even if the applied loads continue to increase. Furthermore, rock heterogeneity could significantly influence crack propagation patterns and the peak uniaxial compressive strengths of rock specimens. Moreover, anti-wing cracks only appeared in relatively heterogeneous rocks, and the peak uniaxial compressive strengths of the specimens were observed to depend on the inclination of the pre-existing flaw. Finally, the mechanism of surface crack propagation is discussed in the context of numerically simulated anti-plane loading tests, wherein it was identified that Mode III loading (anti-plane loading) does not lead to Mode III fracture in rocks due to their high ratio of uniaxial compressive strength to tensile strength. This finding could explain the lateral growth of an existing flaw in its own plane, which is a phenomenon that has not been observed in laboratory experiments.  相似文献   

11.
GILLIAN REX 《Sedimentology》1985,32(2):245-255
The mechanism of formation of fossil plant ‘pith casts’ has been investigated experimentally using a small laboratory flume tank. The extent to which filling occurs is dependent on stem length and diameter, and on the current velocity. Stem fills produced by sediment carried in suspension show a distinct structure of two wedges of sediment deposited at either end of the stem cavity. These wedges are deposited from small flow vortices which form when the flow around the stem separates, as the flow through the stem becomes restricted. Stems filled by bedload currents do not show such a uniform structure. The experimentally produced stem fills are comparable with fossil pith casts, e.g. Catamites. The formation of cortical casts of Stigmaria is not simply explained in terms of the processes operating in open-ended stem segments. This investigation of the mechanics of filling of hollow plant organs, and the structure of the fill produced, offers a basis for interpreting the sedimentary environment in which the fossil fills have formed, and leads to a fuller understanding of the mode of formation of such fossils.  相似文献   

12.
Rainfall-induced landslides on steep slopes are a common feature in much of Italy’s mountain areas covered by shallow-pyroclastic deposits. Generally, these deposits are unsaturated and have a slope angle higher than 40°–50°; hence their stability is due to the positive effect of matric suction on soil shear strength. During rainfall, rainwater infiltration causes a decrease in suction, which in turn causes changes in soil mechanical and hydraulic properties, leading towards an instability process. However, the response of pyroclastic soil slopes to rainwater infiltration is not fully understood. The aim of this study is to link slope instability to the infiltration process on the basis of advanced geotechnical characterization, in situ monitoring and numerical analysis calibrated through a back-analysis of well-instrumented flume tests.  相似文献   

13.
Hydrogeology Journal - Adequate groundwater management requires models capable of representing the heterogeneous nature of aquifers. A key point is the theoretical knowledge of flow behaviour in...  相似文献   

14.
Site and laboratory investigation of the Slano blato landslide   总被引:2,自引:0,他引:2  
The Slano blato landslide is situated above the village of Lokavec, in the western part of Slovenia. This area is one of the seismically most active parts of the country. Considering just the last decade, movement of the landslide was observed in November 2000, when the displaced material reached a velocity of 60–100 m/day. Silty and clayey gravel above flysch layers of marl and sandstone formed the landslide mass.Geotechnical investigations of the landslide were performed in 2003 and 2004, when the depth of the landslide was determined, as well as the geotechnical parameters and the sliding mechanism. Rheological tests were also carried out for further analysis. Based on the investigation results and the observed landslide velocity, the landslide was classified as an earth flow. Inclinometer measurements showed that the landslide has two shear surfaces, with different behaviour shown as each.A stability analysis was carried out numerically by applying the Mohr–Coulomb and Burger elasto–plastic models. The Mohr–Coulomb model indicated that the high water level influences the landslide instability. In the case of the Burger elasto-plastic model, a higher velocity was calculated, at a water content of between 35 and 40%.  相似文献   

15.
The large-scale construction of railway tunnels in China is hindered by several challenges, including large depths, large tunnel cross-sections, and fragile geological conditions. In this paper, we explored a new physical and numerical simulation method that improves upon the currently used methods to investigate the deformation and failure modes of weak rocks surrounding a tunnel. We also compared the results from physical tests and numerical simulations with the field measurements to demonstrate the effectiveness of the proposed numerical simulation method. In the physical model test, an artificial speckle field was developed by staining quartz sand particles and mixing the particles with barite powder and petroleum jelly in preset proportions. The artificial speckle field was employed in the digital speckle correlation method (DSCM) to monitor the evolution of the strain field on the surface of the plain strain model for tunneling during loading. A secondary strain-softening constitutive model using the numerical modeling code FLAC3D was developed (degradation constitutive model) by considering the deformation modulus degradation in the numerical simulation. The failure mode of weak rocks surrounding a tunnel in the physical model test was examined using the developed degradation constitutive model. Both the physical and numerical results revealed that the least stable area was the shear wedge along the minimum principal stress, which was confirmed in the damage zone of the surrounding rocks. The results were consistent with previous research findings. The results of the DSCM in the physical model test indicated that the shear wedge in the middle part of the tunnel and the cracks around the arch of the tunnel were induced by shear strain, whereas the collapse of the arch was attributed to a combination of tensile strain and shear strain. A comparison of the physical and numerical simulation results demonstrated that the degradation constitutive model can be used to describe the extent and depth of the excavation damage zone of tunneling. A comparison of the displacements from the numerical simulation and field measurements indicated that the degradation model can be used to capture the displacement of weak rocks surrounding tunnels.  相似文献   

16.
17.
The layer-parallel compression of a regular bilaminate consisting of layers with materials described by an incompressible power-law elastic model is considered. The average mechanical properties of this idealised multilayer are then represented by those of an equivalent anisotropic continuum with internal resistance to bending. Changes in material properties that accompany uniform finite shortening are accounted for. Interpretation of the internal instability analysis for such a continuum, introduced in the companion paper involves the use of a spectrum which at a given level of strain, scans all directions within the continuum for relative susceptibility to a heterogeneous simple shearing instability.Estimates of nonlinear material properties from reported experiments on the behaviour of various rocks in the time-independent deformation regime, and geometric parameters such as the volume fraction of each material and the number of confined layers are considered. The shapes of the resulting spectra may be used to predict natural conditions that will favour the initiation of repetitive buckle folds or more localized disturbances such as kink-bands and faults. Results suggest that for typical properties of sedimentary multilayers, kinking is strongly favoured over repetitive buckling where the weaker material occupies only a very small volume fraction of the multilayer. The effect of significant imperfections leading to slippage between layers is discussed.Finally, a simple classification of structure genesis is proposed in which the mechanical relationships between apparently diverse structures is illustrated.  相似文献   

18.
Soil-gas radon measurements provide a valuable tool in assessing probable indoor radon levels on a regional basis. However, in Great Britain, seasonal weather changes can cause large changes in soil-gas radon concentration. Although this does not significantly constrain systematic radon potential mapping programmes, it does cause difficulties in responding to ad-hoc requests for site-specific radon investigations. The relationship between soil-gas radon and gamma spectrometry measurements made in the field with radon released from a representative sample of soil in the laboratory has been investigated as part of a program to develop a method of radon potential mapping and site investigation which can be used at any time of the year. Multiple soil and soil-gas samples were collected from sites underlain by bedrocks with widely varying radon potentials. For each geological unit, sites both free of and covered by glacial drift deposits were sampled. Soil and soil-gas samples were taken at the same depth of 60–100 cm. The effectiveness of these radon site investigation procedures has been evaluated by studying the relationship between the soil-gas radon, gamma spectrometry and radon emanation data with an independent estimate of the radon risk. The geologic radon potential (GEORP), which is the proportion of existing dwellings which exceed the UK radon Action Level (200 Bq m−3) for a particular combination of solid and drift geology within a defined geographic area, has been used for this study as the independent estimate of radon risk. Soil-gas radon, radon emanation and eU (equivalent uranium by field γ spectrometry) are all good geochemical indicators of radon risk (GEORP) in Derbyshire but only soil-gas radon correlates significantly with GEORP in Northamptonshire. Radon in soil gas discriminates more effectively between sites with different radon potential in Northamptonshire if soil permeability is also taken into account. In general, measurement of soil-gas radon in the field provides the most universally applicable indicator of radon potential. If soil-gas radon concentrations cannot be determined because of climatic factors, for example when the soil profile is waterlogged, measurement of radon emanation in the laboratory or measurement of eU can be used as radon potential indicators in some geological environments. This applies particularly in areas where the soil composition rather than the composition and permeability of the underlying rock or superficial deposits are the dominant controls of radon potential. It appears, therefore, that it may be necessary to use different radon site investigation methods according to the specific factors controlling radon emanation from the ground. In some cases no method will provide a reliable indicator of radon risk under unfavourable climatic conditions.  相似文献   

19.
In this paper, steel spheres embedded in a cement matrix were studied using numerical and physical ISRM testing procedures. A challenge in discrete element simulations is to select appropriate micro‐mechanical models and parameters, to recover the observed macro‐mechanical behavior. An ideal experiment on cohesive granular assemblies constructed identical to numerical ones would validate these micro models for a set of measured micro‐parameters. The first part of the paper summarizes the previous studies in this area, outlines such experimental methodology and depicts the steps followed for the preparation and the testing of cemented granular assemblies together with the derivation of micro‐parameters. The second part discusses the results of numerical and physical ISRM standard tests including uniaxial and triaxial compression, Brazilian tensile and shear box tests. Physical samples were prepared using steel balls bonded with Portland cement, cured under controlled laboratory conditions and tested in compression, tension and shearing. Acoustic emissions were monitored in uniaxial tests to characterize the damage thresholds relative to volumetric strains. Numerical simulations were conducted with PFC 3D using micro‐mechanical parameters derived from physical testing. Parametric sensitivity studies were carried out to look into the dependency of macroscopic responses on the parameters. The results from both numerical and physical tests showed good correspondence in macroscopic behavior i.e. peak strength, stages of damage, mode of failures. However, the numerical simulations reflected a stiffer mechanical response than physical assemblies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号