首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An efficient method, based on the Ritz concept, for dynamic analysis of response of multistorey buildings including foundation interaction to earthquake ground motion is presented. The system considered is a shear building on a rigid circular disc footing attached to the surface of a linearly elastic halfspace. In this method, the structural displacements are transformed to normal modes of vibration of the building on a rigid foundation. The analysis procedure is developed and numerical results are presented to demonstrate that excellent results can be obtained by considering only the first few modes of vibration. As the number of unknowns are reduced by transforming to generalized co-ordinates, the method presented is much more efficient than direct methods.  相似文献   

2.
Two-storey-building frames have been designed and built in an effort to investigate the pounding phenomenon of adjacent buildings during earthquakes. Static tests have been first performed to determine the static characteristics and the support conditions of the test structures. Sinusoidal and random acceleration signal tests have been subsequently performed to determine the dynamic characteristics of the test structures. Two series of tests were carried out using the shaking table simulator. In the first case, the dynamic response has been recorded without pounding, while in the second case, the test structures have been placed with zero-gap separation and pounding was induced. Input energy time histories were correlated and compared with and without pounding. The experimental results were compared with analytical ones based on a formulation of the contact impact problem by the Lagrange multiplier method. Good agreement between the experimental and the analytical results was achieved.  相似文献   

3.
A study is made of the dynamic behaviour of multistorey steel rigid-frame buildings with set-back towers. The effects of set-backs upon the building frequencies and mode shapes are examined. Then the effects of set-backs on seismic response are investigated by analysing the response of a series of set-back building frame models to the El Centro ground motion. Finally, the computed responses to the El Centro earthquake are compared with some code provisions dealing with the seismic design of set-back buildings. The conclusions derived from the study include the following:
  • 1. The higher modes of vibration of a set-back building can make a very substantial contribution to its total seismic response; this contribution increases with the slenderness of the tower.
  • 2. Some of the important response parameters for the tower portion of a set-back building are substantially larger than for a related uniform building.
  • 3. For very slender towers, the transition region between the tower and the base may be subjected to very large storey shears.
  相似文献   

4.
A primary goal of earthquake engineering is to protect society from the possible negative consequences of future earthquakes. Conventionally, this goal has been achieved indirectly by reducing seismic damage of the built environment through better building codes, or more comprehensibly, by minimizing seismic risk. However, the effect that building damage has on occupants is not explicitly taken into account while designing infrastructure. Consequently, this paper introduces a conceptual framework and numerical algorithm to assess earthquake risk on building occupants during seismic events, considering the evacuation process of the structure. The framework combines probabilistic seismic hazard analysis, inelastic structural response analysis and damage assessment, and couples these results with the response of evacuating agents. The results are cast as probability distributions of variables that measure the overall performance of the system (e.g., evacuation times, number of injured people, and repair costs) for specific time windows. As a testbed, the framework was applied to the response of a reinforced concrete frame building that exemplifies the use of all steps of the methodology. The results suggest that this seismic risk evaluation framework of structural systems that combine the response of a physical model with human agents can be extended to a wide variety of other situations, including the assessment of mitigation actions in communities and people to improve their earthquake resilience. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Many closely located adjacent buildings have suffered from pounding during past earthquakes because they vibrated out of phase.Furthermore,buildings are usually constructed on soil;hence,there are interactions between the buildings and the underlying soil that should also be considered.This paper examines both the interaction between adjacent buildings due to pounding and the interaction between the buildings through the soil as they affect the buildings’ seismic responses.The developed model consists of adjacent shear buildings resting on a discrete soil model and a linear viscoelastic contact force model that connects the buildings during pounding.The seismic responses of adjacent buildings due to ground accelerations are obtained for two conditions:fixed-based(FB) and structure-soil-structure interaction(SSSI).The results indicate that pounding worsens the buildings’ condition because their seismic responses are amplified after pounding.Moreover,the underlying soil negatively impacts the buildings’ seismic responses during pounding because the ratio of their seismic response under SSSI conditions with pounding to those without pounding is greater than that of the FB condition.  相似文献   

6.
The dynamic, bi-linear response behaviour of a series of eight storey shear buildings subjected to simulated earthquake excitation is studied. The specific objective of the investigation is to determine under what conditions a yielding first storey can adequately protect the upper storeys from significant yielding. Two classes of buildings are considered: stiff (0.5 sec period) and flexible (2.0 sec period), and the basic parameters considered in the yielding first storey are the yield force level and the bi-linear stiffness. The results demonstrate that a very low yield force level and an essentially perfectly plastic yielding mechanism are required in the first storey to provide effective protection to the superstructure. Moreover, the required displacement capacity of such an effective first storey mechanism is found to be very large.  相似文献   

7.
The study presents probabilistic structural fragility assessment of public school buildings in Istanbul, which were constructed based on a standardized/typical project. The typical structure is a four-story, reinforced concrete shear wall building with moment resisting frames. Derivation of fragility functions rely on nonlinear dynamic analyses through Monte Carlo simulations. Nonlinear dynamic analyses are initially performed for a fully deterministic structural model based on the blueprints of the typical school building project. Uncertainties are introduced in different analysis cases following a modified version of the algorithm presented in Smyth et al. (2004) [21], which considers the effect of the random distribution of the parameters using a Monte Carlo approach. Aleatory uncertainties concerning material properties (i.e. compressive strength of concrete, yield strength of reinforcing steel and concrete density), geometrical characteristics (i.e. span lengths and story heights) and cross sectional dimensions of beams, columns and shear walls as well as epistemic uncertainty in the direction of ground motion excitation are considered. Statistical distributions for the parameters considered are obtained from in-situ measurements and material sampling tests. Fragility functions are produced in terms of peak ground acceleration and velocity as well as of the elastic spectral displacement at the first vibration period of the building. Mean damage ratios are calculated from the derived fragility functions. They are further compared to mean damage ratios calculated for similar building typologies provided in HAZUS-MH technical manual and in Istanbul building inventory.  相似文献   

8.
2017年5月11日新疆塔什库尔干5.5级地震给震区建筑结构造成了不同程度破坏。选择震区钢筋混凝土(RC)框架结构、砖混结构以及土石木结构等3类典型建筑结构,介绍了各类建筑结构地震破坏特点,分析了震害特征与破坏机理。结果表明:RC框架结构在地震中表现出了优异的抗震性能,即使在震中区,破坏也仅仅表现为非结构性破坏,如填充墙开裂和吊顶脱落等;砖混结构绝大多数抗震性能优良,仅震中区的少数建筑物发生了承重墙墙体开裂情况;土石木结构房屋抗震性能最差,地震破坏最为严重,是导致该次地震人员伤亡主要原因。建议地震高烈度设防区房屋建筑应采用抗震性能较好的RC框架结构和砖混结构,而抗震性能差的土石木建筑房屋应尽量避免继续建设和使用。结果可供类似地区房屋建设和建筑结构抗震设计等工作参考。  相似文献   

9.
《建筑工程抗震设防分类标准》(GB50223-2008)和《关于学校、医院等人员密集场所建设工程抗震设防要求确定原则的通知》(中震防发49号)从不同角度对学校和医院等乙类建筑的抗震设防提出要求。通过抗震设计中地震作用计算的原理以及国内外规范抗震设计的方法的阐述,讨论在不同抗震设防烈度下何种方法对乙类建筑结构抗震能力的提高更为有效,并通过对混凝土框架和钢框架的实例分析和验证,提出设计建议。为规范的修订完善提供参考。  相似文献   

10.
This paper is concerned with the free vibrations of a restricted class of multi-storey shear buildings in which inertial coupling exists between the torsional and the two sway vibrations. The restrictions imposed are that (a) the shear centres of all storeys lie on a vertical straight line, (b) the principal axes of shear are in the same directions in all storeys, (c) the centres of mass of all floors lie on another vertical straight line, (d) the radius of gyration about the shear centre of every floor mass is the same and (e) the ratios of the two shear stiffnesses to the torsional stiffness do not vary from storey to storey. In consequence of the last restriction it is proved that the 3n natural frequencies, normal modes and generalized masses, where n is the number of storeys, are expressible very simply in terms of products of the three natural frequencies, normal modes and generalized masses of the single-storey, three-dimensional building formed by removing everything above the first floor, with the n natural frequencies, normal modes and generalized masses of a certain n-storey, two-dimensional shear frame. In the special case of a uniform building, a simple closed form solution, valid for any number of storeys, is given.  相似文献   

11.
Two reinforced concrete buildings which suffered architectural and minor structural damage during the 1971 San Fernando earthquake, were shaken again by the 1987 Whittier Narrows earthquake. Their well recorded responses are analyzed employing a system identification technique. Comparison of the vibration parameters inferred from analyses of the Whittier earthquake response to the corresponding parameters inferred from dynamic response data before, during and after the San Fernando earthquake verify the adequacy of the repairs made on the structures. Also, comparison of the recorded dynamic responses with the design code requirements provides supporting evidence for the adequacy of current design practices.  相似文献   

12.
The paper describes the earthquake performance assessment of two historical buildings located in Istanbul exposed to a Mw = 7+ earthquake expected to hit the city and proposes solutions for their structural rehabilitation and/or strengthening. Both buildings are unreinforced clay brick masonry (URM) structures built in 1869 and 1885, respectively. The first building is a rectangular-shaped structure rising on four floors. The second one is L-shaped with one basement and three normal floors above ground. They survived the 1894, Ms = 7.0 Istanbul Earthquake, during which widespread damage to URM buildings took place in the city. Earthquake ground motion to be used in performance assessment and retrofit design is determined through probabilistic and deterministic seismic hazard assessment. Strength characteristics of the brick walls are assessed on the basis of Schmidt hammer test results and information reported in the literature. Dynamic properties of the buildings (fundamental vibration periods) are measured via ambient vibration tests. The buildings are modelled and analyzed as three-dimensional assembly of finite elements. Following the preliminary assessment based on the equivalent earthquake loads method, the dynamic analysis procedure of FEMA 356 (Pre-standard and commentary for the seismic rehabilitation of buildings, American Society of Civil Engineers, Reston, 2000) and ASCE/SEI 41-06 (Seismic rehabilitation of existing buildings, American Society of Civil Engineers, Reston, 2007) is followed to obtain dynamic structural response of the buildings and to evaluate their earthquake performance. In order to improve earthquake resistance of the buildings, reinforced cement jacketing of the main load carrying walls and application of fiber reinforced polymer bands to the secondary walls are proposed.  相似文献   

13.
This paper presents results of an analytical study of the inelastic earthquake torsional response of a class of setback frame buildings. In the first part of the study, the modal response spectrum analysis procedure is utilized to determine the yielding strengths of structural members in an idealized but representative setback frame building model. Results are then presented for the inelastic dynamic response of this setback building model subjected to an ensemble of six earthquake ground motions. The results indicate that the modal response spectrum analysis procedure is inadequate for preventing excessive response leading to concentration of damage in vulnerable structural members, such as those in the tower near the notch and those in the base (the part of the structure below the tower) near the perimeter at the opposite side of the tower. The second part of the study develops a modified equivalent static force procedure for strength design of such setback frame buildings. Response analyses show that the proposed procedure results in improved and satisfactory inelastic performance of the selected class of setback frame buildings, having a wide range of realistic configurations.  相似文献   

14.
以往对砌体结构的抗震鉴定或震害预测方法没有考虑构造柱、圈梁等抗震措施对增强砌体结构抗倒能力的影响,使得在高烈度下的鉴定或震害预测结果多为倒塌,这与震害实际不符合。实际在高烈度区,有一些砌体结构并没有倒塌。本文按照杨玉成等[1]提出的用抗倒增强系数修正楼层综合抗震能力指数方法,将抗倒增强系数的取值推广到不同工况;提出地震烈度为Ⅹ度时烈度影响系数为4.0;推演了杨玉成等提出的用综合抗震能力指数表示的震害预测判别标准。按此法进行了24栋建筑的分析,震害预测结果显示考虑抗倒能力的方法适用于高烈度下的砌体结构震害预测,简单易用,符合震害实际。  相似文献   

15.
提出了巨型框架—次框桁架结构体系。采用ANSYS有限元程序对巨型框架—次框桁架结构体系进行了抗震动力时程分析,讨论了该结构体系在多条地震波作用下的动力位移及内力等地震响应。计算结果表明,巨型框架—次框桁架结构体系具有良好的抗震性能,能够提高巨型框架结构的抗震性能,不但可以有效地降低结构构件的地震内力,同时也不会给主框架结构体系的布置带来较大的影响,巨型框架—次框桁架结构是一种抗震性能良好的结构体系。计算结果对巨型结构的抗震设计有较大的参考价值。  相似文献   

16.
The importance of inelastic action of frame structures subjected to strong ground motions has been recognized by engineers for many years. However, the dynamic analysis of buildings undergoing inelastic deformations requires the solution of many theoretical problems, as well as the development of computer software which makes such analyses economically feasible in a design office–in spite of the extraordinary amount of computation involved. In this paper, some of the principal theoretical problems are briefly described. These are the load-deformation relationship, yield capacity reduction, ductility, P– δ effect, viscous damping, panel zone distortions, numerical integration techniques, energy analysis and the effect of non-structural elements. Special consideration is given to questions associated with the practical implementation of this theory. These questions arose during the development of a computer program, called NLDYN, capable of analysing the non-linear dynamic behaviour of tall buildings in an engineering office environment. The capabilities of this computer program are illustrated with the results of the analysis of a 60 storey office building currently under construction in downtown Los Angeles.  相似文献   

17.
The collapse of wood buildings was one of the main contributors to the heavy death toll and economic losses during the 1995 Hyogo‐ken Nanbu (Kobe) earthquake in Japan. In California, half of the property loss from the 1994 Northridge earthquake was attributed to wood construction. Based on damage observed in recent earthquakes, the seismic vulnerability of existing wood buildings under maximum credible seismic events is uncertain. The main objective of this study is to quantify the seismic collapse fragilities and collapse mechanisms of a two‐story townhouse and three‐story woodframe apartment building through numerical analyses. Three construction quality variants (poor, typical and superior) were considered for each building in order to assess the effects of construction qualities on seismic collapse fragilities. The buildings were also re‐designed according to the 2006 edition of the International Building Code to quantify the seismic fragilities of modern woodframe construction. The results obtained suggest that the construction quality, excitation direction and wall finish materials can influence significantly the collapse fragilities of woodframe buildings. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents an analytical method for evaluating the capacity curve of masonry buildings according to non-linear static analysis. This method splits the building into stories, and the vertical structures of each story into masonry panels, which are analyzed individually by a new push-over analysis. The behavior of each panel is reproduced with an evolutive strut-and-tie model, which simulates the uncracked and cracked behavior of the panel subjected to a vertical constant force and a lateral force that increases up to the complete development of the failure mechanism. The strut-and-tie model provides the capacity curve of the panel. The composition of the capacity curves of all the panels of a story provides the capacity curve of this story. The capacity curves of all the stories of the building can be used to obtain either the maximum drift that the building can withstand or the behavior factor of the structure. Either outcome allows the specific dissipation capacity and overstrength of the masonry building to be considered in the seismic analyses, which provides ultimate limit state verifications with more reliability.The proposed method is applied to a school building. The comparison between seismic safety assessed with this method and with a linear dynamic analysis, all other parameters being equal, shows that the latter approach is overly-conservative and misleading. In fact, the specific inelastic capacity, which only the former approach can consider, influences greatly the seismic behavior of the case study.  相似文献   

19.
根据玉树地震灾区玉树州红旗小学建筑物震后破坏情况,结合现场图片对其破坏形态及原因进行了分析.提出了对砖混结构教学楼抗震设防的若干建议:(1)限制采用悬挑外廊式单跨多层砖混结构,最好在外走廊的外侧边加设一排钢筋混凝土柱;(2)优先采用现浇混凝土楼面板、屋面板.(3)每层设圈梁,多设构造柱;(4)建筑平面、立面布置应该规则、对称,不宜局部突出;(5)教学用房的层数应该加以限制,小学不超过4层;(6)外走廊宽度应该适当增宽;(7)在学生中普及地震应急和救生知识,每年定期开展地震灾害的应急、救生演习;(8)在学校建筑物基础与上部结构之间设置叠层橡胶支座,以减小建筑物的地震反应.  相似文献   

20.
Large number of vulnerable reinforced concrete (RC) buildings exists in earthquake prone areas. These low cost residential and/or commercial buildings, which are three to seven-stories high, usually do not receive essential engineering services during the construction phase. Finding cheap, easily applicable and occupant friendly retrofitting techniques are extremely important to reduce the seismic risk of these buildings. As an attempt to this, a particular type of high strength clay brick is studied to evaluate its potential for the structural retrofitting. A set of experiment was conducted to assess the important mechanical characteristics of the infill walls made from these bricks. Also the performance of two RC frames retrofitted with these walls, having different connection details between the wall and RC members was examined experimentally. The analytical nonlinear static analyses of these specimens have been performed using SeismoStruct to achieve some model parameters for representing the “infill wall model” in the program. Adaptive pushover and nonlinear time history analyses were conducted to investigate the performance of a six storey representative RC frame retrofitted with these walls. Evaluation of the results obtained in these analyses prove that this retrofitting technique introduces important strength and stiffness increments to the structure, regarding its seismic demands, which are similar to the results obtained from the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号