首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
The far infrared powder absorption spectra (10–200 cm?1) for a maximum microcline sample (obtained by ion-exchange from Amelia albite) and for a natural maximum microcline were measured at steps of 10 K on lowering and raising the temperature between 300 and 110 K. Of the absorption bands at 97.5, 113.5, 137.5, 148, and 157 cm?1 occurring at room temperature, those at 157 and eventually 148 cm?1 showed evidence of a phase transition and only that at 157 cm?1 showed hysteresis. The transition occurs at 245±5 K on lowering the temperature and the low-temperature form can be superheated to 300 K in the case of the ion-exchange sample. Oriented thin sections parallel to (001) and (010) were also measured to 110 K as a function of the direction of the electric vector E, but could not be unambiguously interpreted. Though the effect is very slight it is tentatively proposed that the phase transition (already characterized by calorimetry and lattice parameters) involves changes in K-O and T-O-T bonds.  相似文献   

2.
Infrared (IR) and nearinfrared (NIR) absorption spectra of hydrous and F-rich topazes were measured to assign an OH bending mode of topaz. Three absorption peaks at 1165, 3650, and 4803 cm−1 are assigned to OH related absorption peaks. Since a peak at 4803 cm−1 can be assigned to a combination mode of 1165 and 3650 cm−1, the 1165 cm−1 peak is harmonic with the 3650 cm−1 peak. Polarized IR absorption spectra of (100), (010), and (001) planes of the hydrous topaz were measured to examine IR active orientation of the 1165 cm−1 OH related mode. Three pleochroic distributions of the absorption peak at 1165 cm−1 on (100), (010), and (001) planes indicate an active orientation of the 1165 cm−1 OH related mode. The IR active orientation of the 1165 cm−1 OH related mode in topaz is normal to the OH dipole. The orthogonality and harmonic combination mode indicate that the 1165 cm−1 peak is OH bending mode. The active orientation of OH bending mode is polarized in the plane normal to the OH dipole. The polarization suggests that anisotropic thermal vibration of protons on the hydroxyl is maximum along the IR active orientation. Received: August 16, 1996 / Revised, accepted: April 20, 1997  相似文献   

3.
Polarized electronic absorption spectra, Ea(∥X), Eb(∥Y) and Ec(∥Z), in the energy range 3000–5000?cm–1 were obtained for the orthorhombic thenardite-type phase Cr2SiO4, unique in its Cr2+-allocation suggesting some metal-metal bonding in Cr2+Cr2+ pairs with Cr-Cr distance 2.75?Å along [001]. The spectra were scanned at 273 and 120?K on single crystal platelets ∥(100), containing optical Y and Z, and ∥(010), containing optical X and Z, with thicknesses 12.3 and 15.6?μm, respectively. Microscope-spectrometric techniques with a spatial resolution of 20?μm and 1?nm spectral resolution were used. The orientations were obtained by means of X-ray precession photographs. The xenomorphic, strongly pleochroic crystal fragments (X deeply greenish-blue, Y faint blue almost colourless, Z deeply purple almost opaque) were extracted from polycrystalline Cr2SiO4, synthesized at 35?kbar, above 1440?°C from high purity Cr2O3, Cr (10% excess) and SiO2 in chromium capsules. The Cr2SiO4-phase was identified by X-ray diffraction (XRD). Four strongly polarized bands, at about 13500 (I), 15700 (II), 18700 (III) and 19700 (IV) cm–1, in the absorption spectra of Cr2SiO4 single crystals show properties (temperature behaviour of linear and integral absorption coefficients, polarization behaviour, molar absorptivities) which are compatible with an assignment to localized spin-allowed transitions of Cr2+ in a distorted square planar coordination of point symmetry C2. The crystal field parameter of Cr2+ is estimated to be 10?Dq?10700?cm–1. A relatively intense, sharp band at 18400?cm–1 and three other minor features can, from their small half widths, be assigned to spin-forbidden dd-transitions of Cr2+. The intensity of such bands strongly decreases on decreasing temperature. The large half widths, near 5000?cm–1 of band III are indicative of some Cr-Cr interactions, i.e. δ-δ* transitions of Cr2 4+, whereas the latter alone would be in conflict with the strong polarization of bands I and II parallel [100]. Therefore, it is concluded that the spectra obtained can best be interpreted assuming both dd-transitions of localized d-electrons at Cr2+ as well as δ-δ* transitions of Cr2 4+ pairs with metal-metal interaction. To explain this, a dynamic exchange process 2 Crloc 2+?Cr2, cpl 4+ is suggested wherein the half life times of the ground states of both exchanging species are significantly longer than those of the respective optically excited states, such that the spectra show both dd- and δ-δ*-transitions.  相似文献   

4.
Absorption bands are determined in polarized optical spectra of vivianite Fe3(PO4)2·8H2O, recorded at room and low temperatures. These bands are caused by spin-allowed d-d transitions in structurally nonequivalent Fe A 2+ (~11000 cm-1 (γ-polarization) (and) ~12000 cm-1 (β-polarization)) (and) Fe B 2+ (~8400 cm-1 (γ, α-polarization) and ~11200 cm-1 (α-polarization)) ions. A charge transfer band (CTB) Fe B 2+ +Fe B 3+ →Fe B 2+ +Fe B 2+ (~15000 cm-1) also determined, has polarizing features giving evidence of a change in the Fe B 2+ -Fe B 3+ bond direction, when compared with Fe B 2+ -Fe B 2+ . Bands of exchange-coupled Fe3+-Fe3+ pairs (~19400, ~20400, ~21300 and ~21700 cm-1) which appear on oxidation of Fe2+ in paired Fe B octahedra are also characterized.  相似文献   

5.
Potential protonation sites for, kyanite, sillimanite, and andalusite, located in a mapping of the (3, −3) critical points displayed by their L(r) = −∇2ρ(r) distributions, are compared with polarized single-crystal FTIR spectra of kyanite and sillimanite determined earlier and with andalusite measured in this study. For andalusite, seven peaks were observed when the electric vector, E, is parallel to [100]: four intense ones at 3,440, 3,460, 3,526, and 3,597 cm−1 and three weaker ones at 3,480, 3,520, and 3,653 cm−1. Six peaks, three intense ones at 3,440, 3,460, and 3,526 cm−1 and three weaker ones at 3,480, 3,520, and 3,653 cm−1 when E parallels [010]. No peaks were observed when E is parallel to [001]. The concentration of water in andalusite varies between 110 and 168 ppm by weight % H2O. Polarized FTIR spectra indicate that the OH vector is parallel to (001) in andalusite and sillimanite and in kyanite. Examination of the L(r) (3, −3) critical points in comparison with the polarized FTIR indicates that H prefers to bond to the oxygen atoms O1 and O2 in andalusite and O2 and O4 in sillimanite which correspond to the underbonded oxygen atoms and those with the largest L(r) maxima. In kyanite, comparison of the FTIR spectrum and the critical points indicates that H will preferentially bond to the two 4-coordinated O2 and O6 atoms.  相似文献   

6.
A new single beam microtechnique has been developed for measuring the polarized absorption spectra in the region 44,000-4,000 cm?1. Spectra of a natural garnet (Spess70Alm30), measured by the microtechnique and by conventional macrotechniques, are consistent and thus prove the applicability of the microtechnique described. It is possible to obtain well resolved spectra down to about 13,000 cm?1 with crystals as small as about 10 μm. Thus spectra of crystals obtained in routine high-pressure high-temperature silicate syntheses can be measured. The polarized spectra of Mn3+, Fe3+, Fe2+, and Cr3+ in the following synthetic silicate minerals are presented: piemontite (I), acmite (II), orthoferrosilite (III), and kyanite (IV) or uvarovite (V), respectively. O-Cr3+, O-Mn3+, and O-Fe2+ charge transfer band maxima in the UV region are identified at 38,700 cm?1, in V; at 33,200, 35,300, and 39,000 cm?1, in I; and at 32,800, 35,200, and 37,300 cm?1, in III, respectively. Bands in the region ≦25,000 cm?1 are assigned to spin-allowed and spin-forbidden dd transitions as predicted from crystal field theoretical considerations for the foregoing ions in the respective structures.  相似文献   

7.
The polarized (Ea′, Eb and Ec) electronic absorption spectra of five natural chromium-containing clinopyroxenes with compositions close to chromdiopside, omphacite, ureyite-jadeite (12.8% Cr2O3), jadeite, and spodumene (hiddenite) were studied. The polarization dependence of the intensities of the Cr3+ bands in the clinopyroxene spectra cannot be explained by the selection rules for the point groups C 2 or C 2v but can be accounted for satisfactorily with the help of the higher order pseudosymmetry model, i.e. with selection rules for the point symmetry group C 3v. The trigonal axis of the pseudosymmetry crystal field forms an angle of 20.5° with the crystallographic direction c in the (010) plane. D q increases from diopside (1542 cm?1) through omphacite (1552 cm?1), jadeite (1574 cm?1) to spodumene (1592 cm?1). The parameter B which is a measure of covalency for Cr3+-O bonds at M1 sites in clinopyroxene depends on the Cr3+ concentration and the cations at M2 sites.  相似文献   

8.
Room temperature and low temperature Mössbauer and optical absorption spectroscopic data on six natural chloritoids characterized by means of electron microprobe and X-ray powder diffraction techniques are presented. Two narrow quadrupole doublets with widths of 0.25–0.29 mm/s assigned to Fe2+ in a relatively large octahedral site and Fe3+ in a smaller octahedral site, are observed in the Mössbauer spectra. Polarized optical absorption spectra reveal three main absorption bands. A broad absorption band at 16,300 cm?1, which is strongly polarized in EX and EY and shows a linear increase in integral absorption with increasing [Fe2+] [Fe3+] concentration product, is assigned to a Fe2++Fe3+→Fe3++Fe2+ charge transfer transition. This band displays also a temperature dependence different from that of single ion d?d transitions. Two absorption bands at 10,900 cm?1 and 8,000 cm?1 are, on the basis of compositional dependence and energy, assigned to Fe2+ in the large M(1B) octahedra of the brucite-type layer in chloritoid. Combined spectroscopic evidence and structural and chemical considerations support a distribution scheme for ferrous and ferric iron which orders the Fe2+ ions in the M(1B) octahedra and the Fe3+ ions in the small M(1A) octahedral sites. Both types of octahedra are found in the brucite type layer of chloritoid.  相似文献   

9.
The polarized Raman spectra of four different beryl crystals were studied at room temperature in the range from 30 to 4000 cm-1. The spectra show significant differences between the samples studied, and corrections are proposed for the reference Raman spectra of beryl previously reported by Adams and Gardner (1974). Type II water is observed in two crystals; the corresponding symmetric Raman stretching band at 3595 cm-1 is extremely strong for an impurity (about 20% of the strongest beryl lattice mode). Another, sharper, band of similar intensity at 3605 cm-1 could possibly originate from a hydroxyl stretching mode. Additional weaker bands are observed around 1600 cm-1 and 3600–3750 cm-1. The first polarized Raman spectra of bazzite are presented and discussed.  相似文献   

10.
We relate a single-crystal FTIR (Fourier transform infrared) and neutron diffraction study of two natural cancrinites. The structural refinements show that the oxygen site of the H2O molecule lies off the triad axis. The water molecule is almost symmetric and slightly tilted from the (0001) plane. It is involved in bifurcated hydrogen bridges, with Ow···O donor–acceptor distances >2.7 Å. The FTIR spectra show two main absorptions. The first at 3,602 cm?1 is polarized for E ⊥ c and is assigned to the ν3 mode. The second, at 3,531 cm?1, is also polarized for ⊥ c and is assigned to ν1 mode. A weak component at 4,108 cm?1 could possibly indicate the presence of additional OH groups in the structure of cancrinite. Several overlapping bands in the 1,300–1,500 cm?1 range are strongly polarized for ⊥ c, and are assigned to the vibrations of the CO3 group.  相似文献   

11.
Hydroxyl in mantle olivine xenocrysts from the Udachnaya kimberlite pipe   总被引:6,自引:1,他引:5  
The incorporation of hydrogen in mantle olivine xenocrysts from the Udachnaya kimberlite pipe was investigated by Fourier-transform infrared spectroscopy and secondary ion mass spectrometry (SIMS). IR spectra were collected in the OH stretching region on oriented single crystals using a conventional IR source at ambient conditions and in situ at temperatures down to −180°C as well as with IR synchrotron radiation. The IR spectra of the samples are complex containing more than 20 strongly polarized OH bands in the range 3,730–3,330 cm−1. Bands at high energies (3,730–3,670 cm−1) were assigned to inclusions of serpentine, talc and the 10 Å phase. All other bands are believed to be intrinsic to olivine. The corresponding point defects are (a) associated with vacant Si sites (3,607 cm−1 || a, 3,597 E || a, 3,571 cm−1 E || c, 3,567 || c, and 3,556 || b), and (b) with vacant M1 sites (most of the bands polarized parallel to a). From the pleochroic behavior and position of the OH bands associated with the vacant M1 sites, we propose two types of hydrogen—one bonded to O1 and another to O2, so that both OH vectors are strongly aligned parallel to a. The O2–H groups may be responsible for the OH bands at higher wavenumbers than those for the O1–H groups. The multiplicity of the corresponding OH bands in the spectra can be explained by different chemical environments and by slightly different distortions of the M1 sites in these high-pressure olivines. Four samples were investigated by SIMS. The calculated integral molar absorption coefficient using the IR and SIMS results of 37,500±5,000 L mol H2O cm−2 is within the uncertainties slightly higher than the value determined by Bell et al. (J Geophys Res 108(B2):2105–2113, 2003) (28,450±1,830 L mol H2O cm−2). The reason for the difference is the different distributions of the absorption intensity of the spectra of both studies (mean wavenumber 3,548 vs. 3,570 cm−1). Olivine samples with a mean wavenumber of about 3,548 cm−1 should be quantified with the absorption coefficient as determined in this study; those containing more bands at higher wavenumber (mean wavenumber 3,570 cm−1) should be quantified using the value determined by Bell et al. (J Geophys Res 108(B2):2105–2113, 2003).
Monika Koch-MüllerEmail: Phone: +49-331-2881492
  相似文献   

12.
Summary The pleochroic behaviour of a gem-quality enstatite from Tanzania was investigated in the region =2500 to 4000 cm–1. Two sharp absorption bands at =3410 cm–1 and =3510 cm–1 are interpreted to be caused by OH stretching vibrations. As their absorption coefficients are considerably larger parallel to [001] (=direction of the silicate chains) than perpendicular to this direction, the OH dipoles have to be oriented approximately parallel to [001]. On this basis, a stereochemical interpretation of the incorporation of the OH groups into the structure is given.
Der Pleochroismus eines Enstatits von Edelsteinqualität im Gebiet der OH-Streckfrequenz und seine kristallchemische Interpretation
Zusammenfassung Das pleochroitische Verhalten eines Enstatits von Edelsteinqualität aus Tansania wurde im Bereich =2500 bis 4000 cm–1 untersucht. Von zwei scharfen Banden bei =3410 cm–1 und 3510 cm–1 wird angenommen, daß sie durch OH-Streckschwingungen herrühren. Da ihre Absorptionskoeffizienten parallel zu [001] (=Richtung der Silikatketten) beträchtlich größer sind als senkrecht dazu, müssen die OH-Dipole ungefähr parallel zu [001] liegen. Auf dieser Basis wird der Einbau der OH-Gruppen in die Struktur diskutiert.


With 3 Figures  相似文献   

13.
天然紫晶与合成紫晶的鉴别是国内外珠宝鉴定实验室的一个难题,前人主要从双晶、色带、包裹体、红外吸收光谱特征等方面开展了研究。在利用红外光谱鉴别天然紫晶与合成紫晶时,不同的学者尚对3595cm-1或3543cm-1吸收峰作为诊断性还是指示性的判据存在不同认识。本文系统采集了典型的天然紫晶与合成紫晶样品,研究了利用红外光谱测试技术鉴别天然紫晶与合成紫晶的局限性,并尝试将偏振拉曼光谱应用于紫晶成因鉴别。结果表明:利用3595cm-1、3543cm-1红外吸收峰进行紫晶鉴别仅具有指示性意义,不能作为决定性的判定依据,偏振拉曼光谱可作为重要的补充。天然紫晶的偏振拉曼光谱(偏振方向:HH)均出现400cm-1的拉曼峰,而该峰在合成紫晶偏振拉曼光谱中缺失;合成紫晶的偏振拉曼光谱(偏振方向:HH)均具有795cm-1、448cm-1的拉曼峰,而这两个峰在天然紫晶偏振拉曼光谱中缺失。偏振拉曼光谱产生差异的原因可能与天然紫晶和合成紫晶内部晶格变形程度的不同有关。本文揭示的400cm-1、448cm-1和795cm-1偏振拉曼峰可作为鉴别紫晶成因的新依据。  相似文献   

14.
A well-characterized suite of vesuvianite samples from the volcanic ejecta (skarn or syenites) from Latium (Italy) was studied by single-crystal, polarized radiation, Fourier-transform infrared (FTIR) spectroscopy and secondary-ion mass-spectrometry (SIMS). OH-stretching FTIR spectra consist of a rather well-defined triplet of broad bands at higher-frequency (3,700–3,300 cm–1) and a very broad composite absorption below 3,300 cm–1. Measurements with E//c or Ec show that all bands are strongly polarized with maximum absorption for E//c. They are in agreement with previous band assignments (Groat et al. Can Mineral 33:609, 1995) to the two O(11)–H(1) and O(10)–H(2) groups in the structure. Pleochroic measurements with changing direction of the E vector of the incident radiation show that the orientation of the O(11)–H(1) dipole is OHc~35°, in excellent agreement with the neutron data of Lager et al. (Can Mineral 37:763, 1999). A SIMS-based calibration curve at ~10% rel. accuracy has been worked out and used as reference for the quantitative analysis of H2O in vesuvianite by FTIR. Based on previous SIMS results for silicate minerals (Ottolini and Hawthorne in J Anal At Spectrom 16:1266, 2001; Ottolini et al. in Am Mineral 87:1477, 2002) the SiO2 and FeO content of the matrix were assumed as the major factors to be considered at a first approximation in the selection of the standards for H. The lack of vesuvianite standards for quantitative SIMS analysis of H2O has been here overcome by selecting low-silica elbaite crystals (Ottolini et al. in Am Mineral 87:1477, 2002). The resulting integrated molar absorption FTIR coefficient for vesuvianite is i=100.000±2.000 l mol–1 cm–2. SIMS data for Li, B, F, Sr, Y, Be, Ba REE, U and Th are also provided in the paper.  相似文献   

15.
Polarized absorption spectra, σ and π, in the spectral range 30000–400 cm−1 (3.71–0.05 eV) were obtained on crystal slabs // [001] of deep blue rutile at various temperatures from 88 to 773 K. The rutile crystals were grown in Pt-capsules from carefully dried 99.999% TiO2 rutile powder at 50 kbar/1500 °C using graphite heating cells in a belt-type apparatus. Impurities were below the detection limits of the electron microprobe (about 0.005 wt% for elements with Z≥13). The spectra are characterized by an unpolarized absorption edge at 24300 cm−1, two weak and relatively narrow (Δν1/2≈3500–4000 cm−1), slightly σ-polarized bands ν1 at 23500 cm−1 and ν2 at 18500 cm−1, and a complex, strong band system in the NIR (near infra red) with sharp weak peaks in the region of the OH stretching fundamentals superimposed on the NIR system in the σ-spectra. The NIR band system and the UV edge produce an absorption minimum in both spectra, σ and π, at 21000 cm−1, i.e. in the blue, which explains the colour of the crystals. Bands ν1 and ν2 are assigned to dd transitions to the Jahn-Teller split upper Eg state of octahedral Ti3+. The NIR band system can be fitted as a sum of three components. Two of them are partly π-polarized, nearly Gaussian bands, both with large half widths 6000–7000 cm−1, ν3 at 12000 cm–1 and the most intense ν4 at 6500 cm−1. The third NIR band ν5 of a mixed Lorentz-Gaussian shape with a maximum at 3000 cm−1 forms a shoulder on the low-energy wing of ν4. Energy positions, half band widths and temperature behaviour of these bands are consistent with a small polaron type of Ti3+Ti4+ charge transfer (CT). Polarization dependence of CT bands can be explained on the basis of the structural model of defect rutile by Bursill and Blanchin (1983) involving interstitial titanium. Two OH bands at 3322 and 3279 cm−1 in σ-spectra show different stability during annealing, indicating two different positions of proton in the rutile structure, one of them probably connected with Ti3+ impurity. Total water concentration in blue rutile determined by IR spectroscopy is 0.10 wt-% OH. The EPR spectra measured in the temperature interval 20–295 K show the presence of an electron centre at temperatures above 100 K and Ti3+ ions in more than one structural position, but predominantly in compressed interstitial octahedral sites, at lower temperatures. These results are in good agreement with the conclusions based on the electronic absorption data. Received: 24 March 1997 / Revised, accepted: 14 October 1997  相似文献   

16.
Synthetic ringwoodite γ-(Mg1?x Fe x )2SiO4 of 0.4 ≤ x ≤ 1.0 compositions and variously colored micro-grains of natural ringwoodite in shock metamorphism veins of thin sections of two S6-type chondrites were studied by means of microprobe analysis, TEM and optical absorption spectroscopy. Three synthetic samples were studied in addition with Mössbauer spectroscopy. The Mössbauer spectra consist of two doublets caused by VIFe2+ and VIFe3+, with IS and QS parameters close to those established elsewhere (e.g., O’Neill et al. in Am Mineral 78:456–460, 1993). The Fe3+/Fetotal ratio evaluated by curve resolution of the spectra, ranges from 0.04 to 0.1. Optical absorption spectra of all synthetic samples studied are qualitatively very similar as they are directly related to the iron content. They differ mostly in the intensity of the observed absorption features. The spectra consist of a very strong high-energy absorption edge and a series of absorption bands of different width and intensity. The three strongest and broadest absorptions of them are attributed to splitting of electronic spin-allowed 5 T 2g → 5 E g transitions of VIFe2+ and intervalence charge-transfer (IVCT) transition between ferrous and ferric ions in adjacent octahedral sites of the ringwoodite structure. The spin-allowed bands at ca. 8,000 and 11,500 cm?1 weakly depend on temperature, whilst the Fe2+/Fe3+ IVCT band at ~16,400 cm?1 displays very strong temperature dependence: i.e., with increasing temperature it decreases and practically disappears at about 497 K, a behavior typical for bands of this type. With increasing pressure the absorption edge shifts to lower energies while the spin-allowed bands shift to higher energy and strongly decreases in intensity. The IVCT band also strongly weakens and vanishes at about 9 GPa. We assigned this effect to pressure-induced reduction of Fe3+ in ringwoodite. By analogy with synthetic samples three broad bands in spectra of natural (meteoritic) blue ringwoodite are assigned to electronic spin-allowed transitions of VIFe2+ (the bands at ~8,600 and ~12,700 cm?1) and Fe2+/Fe3+ IVCT transition (~18,100 cm?1), respectively. Spectra of colorless ringwoodite of the same composition consist of a single broad band at ca. 12,000 cm?1. It is assumed that such ringwoodite grains are inverse (Fe, Mg)2SiO4-spinels and that the single band is caused by the split spin-allowed 5 E → 5 T 2 transition of IVFe2+. Ringwoodite of intermediate color variations between dark-blue and colorless are assumed to be partly inversed ringwoodite. No glassy material between the grain boundaries in the natural colored ringwoodite aggregates was found in our samples and disprove the cause of the coloration to be due to light scattering effect (Lingemann and Stöffler in Lunar Planet Sci 29(1308), 1998).  相似文献   

17.
Polarized optical absorption measurements were carried out on three single crystals of Mg2SiO4 (forsterite), differently doped with Cr. Two crystals containing average 0.013 and 0.027 weight% Cr, respectively, were pulled from the melt in air, whereas one crystal containing average 0.08 weight% Cr was pulled from the melt in an argon atmosphere. The absorption spectra of the three crystals agree with each other although the intensity of single absorption bands varies significantly. In all -polarized patterns a sharp absorption line around 18000cm-1 (550 nm) appears. Conjectures are presented to assign this line to the lasing center in Cr doped forsterite which very likely exists as Cr4+ at the fourfold coordinated Si site.  相似文献   

18.
Optical absorption spectra are presented for taramellite, traskite and neptunite, all of which have both Fe2+ and Ti4+ as major elements. The spectra of each of these minerals are dominated by a single, intense absorption band in the 415 to 460 nm region with 7000 to 9000 cm?1 halfwidth. These transitions, assigned to Fe2+-Ti4+ intervalence charge transfer, showed little difference in intensity at 80 and 300 K and have molar absorptivities which range from ~100 to ~1300 M?1 cm?1. The Fe2+-Ti4+ absorptions in these standards generally compare well to other mineral spectra in which Fe2+ — Ti4+ intervalence absorption has previously been proposed with the exception of the most cited example, blue corundum.  相似文献   

19.
The behaviour of the ammonium ion in synthetic buddingtonite, N(D,H)4AlSi3O8, has been studied by infrared (IR) spectroscopy from 20 K to 298 K and by 2H NMR spectroscopy from 120 K to 298 K. IR spectra were collected from 500 to 3500 cm–1. Static 2H NMR spectra collected at 298 K and 120 K are very similar, consisting of a single sharp isotropic resonance, indicating complete averaging of quadrupolar interactions and implying that at these temperatures the ammonium ion is in rapid (<1 s) randomised motion within the M-site cavity of the feldspar framework. NMR spectroscopy indicates that the splitting of the internal modes of the ammonium ion observed by IR spectroscopy is not due to freezing in of the ammonium ion. This observation rules out the formation of a preferred N–H...O hydrogen bond, with precession of the ion about it, as proposed by Kimball and Megaw (1978), because any N–H...O hydrogen bond must be very weak and transient in nature. Contraction of the cavity site upon cooling imposes a distortion upon the ammonium ion that affects vibrational modes. This distortion does not affect the motion of the ammonium ion as observed on the NMR time-scale.  相似文献   

20.
In order to investigate the behaviour of proton in brucite under pressure, polarized IR absorption spectra and polarized absorbance distributions of (001) and (110) oriented single crystal of brucite under high pressure were measured by Fourier transform polarized infrared microspectroscopy with diamond anvil cell. A pressure-induced absorption peak at 3645 cm−1 observed under pressures over 2.9 GPa was confirmed to be due to a secondarily formed OH dipole. Polarized absorbance distribution measured under pressure of (110) suggests that the secondary OH dipole is oriented 136.0° to c-axis under 5.3 GPa. Isotropic absorbance distribution of (001) suggests that the secondary OH dipole is disorderly trifurcated. Abrupt onset of the secondary peak and its reverse pleochroism suggest that the process of secondary OH dipole formation is due to proton transfer between layers in brucite. The calculated orientation of the secondary OH dipole consistent with the O-H···O′ angle revealed by neutron diffraction supports the existence of proton transfer along H···O′. The secondary OH dipole implies a new site of proton in brucite under pressure. Received: 6 March 1997 / Revised, accepted: 9 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号