首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 0 毫秒
1.
The cometary Leonid meteoroids represent a size range in between largest carbon-richIDPs and the smallest CI meteorites. Their dustball structure and chemistry offer anopportunity to constrain hierarchical dust accretion inferred from petrologic studies ofaggregate and cluster IDPs. The Leonid shower meteoroids of known ``comet ejection'ages provide an opportunity to study space weathering of cometary dust over periodsof up to several hundred years. The meteors and aggregate and cluster IDPs displaycontinuous thermal modification of organics and volatile element (Na, K-bearing phases), that occur as discrete minerals and amorphous solids each different response during kinetically controlled ablation. Leonid meteoroids are not excessively Na-rich. The occurrences of Leonid meteors can now be accurate predicted and combined withknowledge better models for the settling rates, collections of surviving dust becomea comet nucleus-sampling mission. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Assuming that similar organic components as in comet 81P/Wild 2 are present in incoming meteoroids, we try to anticipate the observable signatures they would produce for meteor detection techniques. In this analysis we consider the elemental and organic components in cometary aggregate interplanetary dust particles and laboratory analyses of inter- and circumstellar carbon dust analogues. On the basis of our analysis we submit that (semi) quantitative measurements of H, N and C produced during meteor ablation will open an entire new aspect to using meteoroids as tracers of these volatile element abundances in active comets and their contributions to the mesospheric metal layers.  相似文献   

3.
This paper describes the Canadian Meteor Orbit Radar (CMOR) that has been in operation since late 2001. CMOR is a 3 station meteor radar operating at a frequency of 29.85 MHz near Tavistock, Ont. To avoid bias against fragmenting meteoroids that is inherent in the traditional multi-station method of Gill and Davies (Mon. Not. R Astron. Soc. 116 (1955) 105), we use a completely geometrical method similar to that used in the AMOR system (Quart. J. R. Astron. Soc. 35 (1994) 293) based on the interferometric determination of the echo directions and the time delays of echoes from two remote stations to obtain the trajectories and speeds of meteoroids. We describe the hardware and some of the software and present some preliminary results that provide a good indication of present capabilities of the system. Typically, we can measure 1500 individual trajectories, and hence orbits, per day with a mean accuracy of 6° in direction and about 10% in speed. A small subset of these for which it is possible to measure the speeds using Hocking's (Radio. Sci. 35 (2000) 1205) method yield speeds with a precision of about 5%. The purpose of this paper is to show that the radiants and speeds necessary for the computation of orbits are well measured rather than to discuss any orbital surveys.  相似文献   

4.
Among the observed circumstellar dust envelopes a certain population, planetary debris disks, is ascribed to systems with optically thin dust disks and low gas content. These systems contain planetesimals and possibly planets and are believed to be systems that are most similar to our solar system in an early evolutionary stage. Planetary debris disks have been identified in large numbers by a brightness excess in the near-infrared, mid-infrared and/or submillimetre range of their stellar spectral energy distributions. In some cases, spatially resolved observations are possible and reveal complex spatial structures. Acting forces and physical processes are similar to those in the solar system dust cloud, but the observational approach is obviously quite different: overall spatial distributions for systems of different ages for the planetary debris disks, as opposed to detailed local information in the case of the solar system. Comparison with the processes of dust formation and evolution observed in the solar system therefore helps understand the planetary debris disks. In this paper, we review our present knowledge of observations, acting forces, and major physical interactions of the dust in the solar system and in similar extra-solar planetary systems.  相似文献   

5.
We present the first results of the Palomar Adaptive Optics observations taken during the Deep Impact encounter with 9P/Tempel 1 in July 2005. We have combined the Palomar near-IR imaging data with our visual wavelength images obtained simultaneously at JPL's Table Mountain Observatory to cover the total wavelength range from 0.4 to 2.3 μm in the B, V, R, I, J, H, and K filter bands, spanning the dates from 2005 July 03-07. We also include in our overall analysis images taken on the pre-encounter dates of June 1 and June 15, 2005. The broad wavelength range of our observations, along with high temporal resolution, near-IR sensitivity, and spatial resolution of our imaging, have enabled us to place constraints on the temperature of the impact flash and incandescent plume of >700 K, and to provide mean dust velocities of order approximately 1.25 h after impact derived from our 1.64 μm observations. Our ejected dust mass estimates, as derived from our near-IR observations, are an order of magnitude less than those previously reported for visual wavelength observations.  相似文献   

6.
This paper corrects and completes a previous study of the shape of the extinction curve in the visible and the value of RV. A continuous visible/infrared extinction law proportional to 1/λp with p close to 1 (± 0.4) is indistinguishable from a perfectly linear law (p = 1) in the visible within observational precision, but the shape of the curve in the infrared can be substantially modified. Values of p slightly larger than 1 would account for the increase of extinction (compared to the p = 1 law) reported for λ > 1 μ m and deeply affect the value of RV. In the absence of gray extinction RV must be 4.04 if p = 1. It becomes 3.14 for p = 1.25, 3.00 for p = 1.30, and 2.76 for p = 1.40. Values of p near 1.3 are also attributed to extinction by atmospheric aerosols, which indicates that both phenomena may be governed by similar particle size distributions. A power extinction law may harmonize visible and infrared data into a single, continuous, and universal interstellar extinction law (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We present observational data for Comet 9P/Tempel 1 taken from 1997 through 2010 in an international collaboration in support of the Deep Impact and Stardust-NExT missions. The data were obtained to characterize the nucleus prior to the Deep Impact 2005 encounter, and to enable us to understand the rotation state in order to make a time of arrival adjustment in February 2010 that would allow us to image at least 25% of the nucleus seen by the Deep Impact spacecraft to better than 80 m/pixel, and to image the crater made during the encounter, if possible. In total, ∼500 whole or partial nights were allocated to this project at 14 observatories worldwide, utilizing 25 telescopes. Seventy percent of these nights yielded useful data. The data were used to determine the linear phase coefficient for the comet in the R-band to be 0.045 ± 0.001 mag deg−1 from 1° to 16°. Cometary activity was observed to begin inbound near r ∼ 4.0 AU and the activity ended near r ∼ 4.6 AU as seen from the heliocentric secular light curves, water-sublimation models and from dust dynamical modeling. The light curve exhibits a significant pre- and post-perihelion brightness and activity asymmetry. There was a secular decrease in activity between the 2000 and 2005 perihelion passages of ∼20%. The post-perihelion light curve cannot be easily explained by a simple decrease in solar insolation or observing geometry. CN emission was detected in the comet at 2.43 AU pre-perihelion, and by r = 2.24 AU emission from C2 and C3 were evident. In December 2004 the production rate of CN increased from 1.8 × 1023 mol s−1 to QCN = 2.75 × 1023 mol s−1 in early January 2005 and 9.3 × 1024 mol s−1 on June 6, 2005 at r = 1.53 AU.  相似文献   

8.
We have obtained near diffraction-limited images of three bipolar PPN at UKIRT in October, 1993: AFGL 915 (the Red Rectangle), AFGL 618, and AFGL 2688 (the Egg Nebula). Images were taken at unidentified infrared (UIR) emission feature wavelengths and at several continuum wavelengths in the 10 and 20µm atmospheric windows. In all three PPN the emission is dominated by a central point source with fainter emission extending for several arcsec. In AFGL 2688, the mid-IR emission is extended in the same direction as the main optical lobes. In AFGL 915, the UIR feature emission is spatially separated from the central source. The spikes that have been observed at 2µm and give the nebula its rectangular appearance are also visible at 10µm.  相似文献   

9.
用lageos1和lageos2激光测距资料联合解地球定向参数   总被引:2,自引:0,他引:2  
为了响应国际地球自转服务中心(IERS)和国际激光测距服务中心(ILRS)的呼吁,上海天文台天文地球动力学研究中心参加了对激光测距卫星lageos1、lageos2的资料的分析、计算,提交了关于地球定向参数(EOP)(1998—2001)的联合(1ageos1、lageos2)解算结果报告:(SHAO)2002L01,利用更精细化的和改正了的计算EOP的模型,获得了EOP(SHAO)2002L01系列,该系列与同时期的IERS的EOP(IERS)C04相比,符合程度:极移Xp、Yp好于0.35mas,日长变化Du好于0.030ms。  相似文献   

10.
PEPSI is the bench‐mounted, two‐arm, fibre‐fed and stabilized Potsdam Echelle Polarimetric and Spectroscopic Instrument for the 2×8.4 m Large Binocular Telescope (LBT). Three spectral resolutions of either 43 000, 120 000 or 270 000 can cover the entire optical/red wavelength range from 383 to 907 nm in three exposures. Two 10.3k×10.3k CCDs with 9‐µm pixels and peak quantum efficiencies of 94–96 % record a total of 92 échelle orders. We introduce a new variant of a wave‐guide image slicer with 3, 5, and 7 slices and peak efficiencies between 92–96 %. A total of six cross dispersers cover the six wavelength settings of the spectrograph, two of them always simultaneously. These are made of a VPH‐grating sandwiched by two prisms. The peak efficiency of the system, including the telescope, is 15 % at 650 nm, and still 11 % and 10 % at 390 nm and 900 nm, respectively. In combination with the 110 m2 light‐collecting capability of the LBT, we expect a limiting magnitude of ≈20th mag in V in the low‐resolution mode. The R = 120 000 mode can also be used with two, dual‐beam Stokes IQUV polarimeters. The 270 000‐mode is made possible with the 7‐slice image slicer and a 100‐µm fibre through a projected sky aperture of 0.74″, comparable to the median seeing of the LBT site. The 43 000‐mode with 12‐pixel sampling per resolution element is our bad seeing or faint‐object mode. Any of the three resolution modes can either be used with sky fibers for simultaneous sky exposures or with light from a stabilized Fabry‐Pérot étalon for ultra‐precise radial velocities. CCD‐image processing is performed with the dedicated data‐reduction and analysis package PEPSI‐S4S. Its full error propagation through all image‐processing steps allows an adaptive selection of parameters by using statistical inferences and robust estimators. A solar feed makes use of PEPSI during day time and a 500‐m feed from the 1.8 m VATT can be used when the LBT is busy otherwise. In this paper, we present the basic instrument design, its realization, and its characteristics. Some pre‐commissioning first‐light spectra shall demonstrate the basic functionality. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
We discuss results from a decade long program to study the fine-scale structure and the kinematics of relativistic AGN jets with the aim of better understanding the acceleration and collimation of the relativistic plasma forming AGN jets. From the observed distribution of brightness temperature, apparent velocity, flux density, time variability, and apparent luminosity, the intrinsic properties of the jets including Lorentz factor, luminosity, orientation, and brightness temperature are discussed. Special attention is given to the jet in M87, which has been studied over a wide range of wavelengths and which, due to its proximity, is observed with excellent spatial resolution. Most radio jets appear quite linear, but we also observe curved non-linear jets and non-radial motions. Sometimes, different features in a given jet appear to follow the same curved path but there is evidence for ballistic trajectories as well. The data are best fit with a distribution of Lorentz factors extending up to γ∼30 and intrinsic luminosity up to ∼1026 W Hz−1. In general, gamma-ray quasars may have somewhat larger Lorentz factors than non gamma-ray quasars. Initially the observed brightness temperature near the base of the jet extend up to ∼5×1013 K which is well in excess of the inverse Compton limit and corresponds to a large excess of particle energy over magnetic energy. However, more typically, the observed brightness temperatures are ∼2×1011 K, i.e., closer to equipartition.  相似文献   

12.
13.
14.
先进天基太阳天文台(ASO-S)是计划于2021年底或2022年上半年发射的中国首颗综合性太阳探测卫星,莱曼阿尔法太阳望远镜(LST)作为ASO-S的有效载荷之一,具体包括莱曼阿尔法全日面成像仪(SDI)、日冕仪(SCI)以及白光望远镜(WST) 3台科学仪器和2台导行镜(GT),其主要目标是在多个波段对太阳上的两类剧烈爆发现象(太阳耀斑和日冕物质抛射)进行连续不间断的高分辨率观测.为了实现这一观测目标, LST所有仪器的观测模式中均包含了一种针对爆发事件而设置的爆发模式.该模式下, SCI将以更高的频率进行图像采集, SDI和WST则以更高的频率对爆发所在区域进行图像采集.测试结果表明,观测图像经过中值滤波、像元合并处理后,可以通过监测图像各像元亮度的相对变化提取爆发事件的时间和位置信息.这些信息将为LST观测模式间的相互切换提供重要电子学输入.  相似文献   

15.
In our previous search for magnetic fields in Herbig Ae stars, we pointed out that HD 101412 possesses the strongest magnetic field among the Herbig Ae stars and hence is of special interest for follow‐up studies of magnetism among young pre‐main‐sequence stars. We obtained high‐resolution, high signal‐to‐noise UVES and a few lower quality HARPS spectra revealing the presence of resolved magnetically split lines. HD 101412 is the first Herbig Ae star for which the rotational Doppler effect was found to be small in comparison to the magnetic splitting and several spectral lines observed in unpolarized light at high dispersion are resolved into magnetically split components. The measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean quadratic field was found to vary in the range of 3.5 to 4.8 kG. To determine the period of variations, we used radial velocity, equivalent width, line width, and line asymmetry measurements of variable spectral lines of several elements, as well as magnetic field measurements. The period determination was done using the Lomb‐Scargle method. The most pronounced variability was detected for spectral lines of He I and the iron peak elements, whereas the spectral lines of CNO elements are only slightly variable. From spectral variations and magnetic field measurements we derived a potential rotation period Prot = 13.86 d, which has to be proven in future studies with a larger number of observations. It is the first time that the presence of element spots is detected on the surface of a Herbig Ae/Be star. Our previous study of Herbig Ae stars revealed a trend towards stronger magnetic fields for younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to a few other (non‐statistical) studies claiming that magnetic Herbig Ae stars are progenitors of the magnetic Ap stars. New developments in MHD theory show that the measured magnetic field strengths are compatible with a current‐driven instability of toroidal fields generated by differential rotation in the stellar interior. This explanation for magnetic intermediate‐mass stars could be an alternative to a frozen‐in fossil field (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Lisse et al. [Lisse, C.M., Kraemer, K.E., Nuth III, J.A., Li, A., Joswiak, D., 2007. Icarus 187, 69-86] recently presented a new analysis of an ISO spectrum of Comet C/1995 O1 (Hale-Bopp), from which they claimed the identification of many new dust species. Among them are PAHs, which were not found in our first analysis of the ISO spectra. We present here a re-examination of the ISO observations of Comet Hale-Bopp. From the absence of PAHs features in the 5.25-8.5 μm region, we infer that PAHs are at least twice less abundant than derived by Lisse et al. The carbonate feature at 7.00 μm is marginally present, but lower by a factor 2 to 3 than predicted by the model of Lisse et al.  相似文献   

17.
Astrometric and photometric observations of major planets, their satellites and asteroids have been made with the 26-in. refractor of the Pulkovo observatory during the period from 1995 to 2006. The CCD (ST6) and photographic observations were carried out. Accurate relative position of satellites of Jupiter and Saturn have been derived. The positions of Saturn have been calculated using the theoretically predicted coordinates of satellites relative to the planet without measurements of the photographic images of the planet. Also the observations of Hale-Bopp comet and Mercury transit have been made. The 26-in. refractor has been included into the international campaign PHEMU-2003: photometric CCD observations of mutual occultations and eclipses of Galilean satellites. The light curves of the events have been obtained and parameters of the events have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号