首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The stability of yttrium-acetate (Y-Ac) complexes in aqueous solution was determined potentiometrically at temperatures 25-175 °C (at Ps) and pressures 1-1000 bar (at 25 and 75 °C). Measurements were performed using glass H+-selective electrodes in potentiometric cells with a liquid junction. The species YAc2+ and were found to dominate yttrium aqueous speciation in experimental solutions at 25-100 °C (log [Ac] < −1.5, pH < 5.2), whereas at 125, 150 and 175 °C introduction of into the Y-Ac speciation model was necessary. The overall stability constants βn were determined for the reaction
  相似文献   

2.
The mobility and transport of gold in low-temperature waters and brines is affected by the aqueous speciation of gold, which is sensitive in particular to pH, oxidation and halide concentrations. In this study, we use UV-Vis spectrophotometry to identify and measure the thermodynamic properties of Au(III) aqueous complexes with chloride, bromide and hydroxide. Au(III) forms stable square planar complexes with hydroxide and halide ligands. Based on systematic changes in the absorption spectra of solutions in three binary systems NaCl-NaBr, NaCl-NaOH and NaBr-NaOH at 25 °C, we derived log dissociation constants for the following mixed and end-member halide and hydroxide complexes: [AuCl3Br], [AuCl2Br2], [AuBr3Cl] and [AuBr4]; [AuCl3(OH)], [AuCl2(OH)2], [AuCl(OH)3] and [Au(OH)4]; and [AuBr3(OH)], [AuBr2(OH)2] and [AuBr(OH)3]. These are the first reported results for the mixed chloride-bromide complexes. Increasing temperature to 80 °C resulted in an increase in the stability of the mixed chloride-bromide complexes, relative to the end-member chloride and bromide complexes. For the [AuCl(4−n)(OH)n] series of complexes (n = 0-4), there is an excellent agreement between our spectrophotometric results and previous electrochemical results of Chateau et al. [Chateau et al. (1966)]. In other experiments, the iodide ion (I) was found to be unstable in the presence of Au(III), oxidizing rapidly to I2(g) and causing Au to precipitate. Predicted Au(III) speciation indicates that Au(III) chloride-bromide complexes can be important in transporting gold in brines with high bromide-chloride ratios (e.g., >0.05), under oxidizing (atmospheric), acidic (pH < 5) conditions. Native gold solubility under atmospheric oxygen conditions is predicted to increase with decreasing pH in acidic conditions, increasing pH in alkaline conditions, increasing chloride, especially at acid pH, and increasing bromide for bromide/chloride ratios greater than 0.05. The results of our study increase the understanding of gold aqueous geochemistry, with the potential to lead to new methods for mineral exploration, hydrometallurgy and medicine.  相似文献   

3.
The solubility of ZnS(cr) was measured at 100 °C, 150 bars in sulfide solutions as a function of sulfur concentration (m(Stotal) = 0.02-0.15) and acidity (pHt = 2-11). The experiments were conducted using a Ti flow-through hydrothermal reactor enabling the sampling of large volumes of solutions at experimental conditions, with the subsequent concentration and determination of trace quantities of Zn. Prior to the experiments, a long-term in situ conditioning of the solid phase was performed in order to attain the reproducible Zn concentrations (i.e. solubilities). The ZnS(cr) solubility product was monitored in the course of the experiment. The following species were found to account for Zn speciation in solution: Zn2+ (pHt < 3), (pHt 3-4.5), (pHt 5-8), and ZnS(HS) (pHt > 8) (pHt predominance regions are given for m(Stotal) = 0.1). Solubility data collected in this study at pHt > 3 were combined with the ZnS(cr) solubility product determined at lower pH to yield the following equilibrium constants (t = 100 °C, P = 150 bars):
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号