首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Bacterial biomass and production rate were measured in the surface (0–100 m) and mesopelagic layers (100–1,000 m) in the subarctic Pacific and the Bering Sea between July–September, 1997. Depth profiles were determined at stations occupied in oceanic domains including the subarctic gyres (western, Bering Sea, and Gulf of Alaska) and a boundary region south of the gyres. In the surface layer (0–100 m), both bacterial biomass and production were generally high in the western and Bering Sea gyres, with the tendency of decrease toward east. This geographic pattern was consistent with the dominant regime of phytoplankton biomass at the time of our survey. A significant portion of variation in bacterial production was explained by the concentration of chlorophyll a (r 2 = 0.340, n = 60, P < 0.001) and, to the greater extent, by the concentration of semilabile total organic carbon (SL-TOC = TOC at a given depth—TOC at 1,000 m, r 2 = 0.488, n = 59, P < 0.0001). Temperature significantly improved the regression model: temperature and chlorophyll jointly explained 60% of variation in bacterial production. These results support the hypothesis that bacteiral growth is largely regulated by the combination of temperature and the supply of dissolved organic carbon in subarctic surface waters. In the mesopelagic layer (100–1,000 m), the geographic pattern of bacterial production was strikingly different from the surface phytoplankton distribution: the production was high in the boundary region where the phytoplankton biomass was lowest. Bacterial growth appeared to be largely controlled by the supply of organic carbon, as indicated by the strong dependency of bacterial production on SL-TOC (r 2 = 0.753, n = 75, P < 0.0001). The spatial uncoupling between surface phytoplankton and mesopelagic bacterial production suggests that the supply rate of labile dissolved organic carbon in the mesopelagic zone does not simply reflect the magnitude of the particulate organic carbon flux in the subarctic Pacific.  相似文献   

2.
The distribution, biomass, and assemblages of vertically migrating micronekton/macrozooplankton were studied in relation to oceanographic conditions around Guam and the adjacent Northern Mariana Islands during Spring 2010, using 3-m2 Isaacs-Kidd Midwater Trawl (IKMT). The study area was located within the oligotrophic waters of the westward flowing North Equatorial Current (NEC). However, southern stations of the survey were situated close to the northern boundary of the more productive North Equatorial Countercurrent (NECC), where we observed the highest biomass, abundance, species richness, and diversity of pelagic organisms. Overall, we recorded 85 species from 20 families of mostly mesopelagic species in the area, with lanternfishes (Myctophidae—40 species) and dragonfishes (Stomiidae—18 species) being the most taxonomically diverse groups. Three genera of mesopelagic shrimps, Sergestes, Janicella and Sergia, dominated the decapod crustacean component of the micronekton community numerically and by biomass, while the contribution from cephalopods was relatively minor. Assemblages of major micronekton/macrozooplankton groups, based on biomass and abundance showed principal changes with latitude. However, the classification and ordination analysis, based on taxonomically resolved taxa (fishes and decapod shrimps), indicated additional zonal variation, with areas east and west of the island chain showing different community structure. The mean total micronekton biomass for the area near the productive boundary region between the NEC and NECC was 5.8 mg/m3, with a mean biomass of 1.2 mg/m3 obtained for stations in the oligotrophic NEC area. The corresponding biomass of mesopelagic fishes was 0.88 mg/m3 and 0.24 mg/m3 for these two areas, respectively. We reviewed and compared the available information on the quantitative distribution of midwater fish biomass in the western tropical Pacific and outlined major patterns of variation in the equatorial Pacific in general.  相似文献   

3.
Fourteen midwater trawl collections to depths of 450 m to 1,400 m were taken at eleven stations in the Bering Sea and adjoining regions of the northern North Pacific by the R/V Hakuho Maru during the summer of 1975. A total of 29 kinds of fishes were identified. Mesopelagic fishes of the families Myctophidae, Gonostomatidae and Bathylagidae predominated in the catches, contributing 14 species (94%) of the fishes caught.Seventeen species of fishes were caught in the Bering Sea, and all of these are known from nearby areas. The mesopelagic fish fauna of the Bering Sea is similar to that in adjoining regions of the northern North Pacific Ocean: endemic species are rare or absent. Stenobrachius nannochir was usually the most common mesopelagic fish in our catches.Stenobrachius leucopsarus is a diel vertical migrant that is usually the dominant mesopelagic fish in modified Subarctic waters of the northeastern Pacific. The change in dominance fromS. nannochir in the western Bering Sea toS. leucopsarus in the eastern Bering Sea is related to differences in oceanographic conditions.  相似文献   

4.
Diel changes in vertical distribution and feeding conditions of the chaetognath Parasagitta elegans (Verill) were observed in three regions of the subarctic North Pacific in the summer of 1997. Samples were collected by repeated vertical hauls with a Vertical Multiple Plankton Sampler (VMPS) for 15–45 hours by demarcating the 0–500 m water column into four sampling layers. Integrated abundance through the entire water column and the proportion of juveniles were higher in the Bering Sea than the western and eastern subarctic Pacific. Juveniles always inhabited the surface layer in the western subarctic Pacific and Bering Sea, but they inhabited the underlying layer in the eastern subarctic Pacific. Stages I–III concentrated into the upper 150 m in the western subarctic Pacific but were distributed widely from 20–300 m in the Bering Sea. Among them, Stages II and III migrated rather synchronously over a wide vertical range in the eastern subarctic Pacific. The feeding rate of P. elegans was calculated to be 0.18 prey/chaetognath/day in the western subarctic Pacific, 0.27 prey/chaetognath/day in the Bering Sea and 0.07 prey/chaetognath/day in the eastern subarctic Pacific.  相似文献   

5.
Acoustic data and net samples were collected during late spring and early fall 1997–1999 to assess zooplankton and micronekton abundance and distribution relative to the Inner Front at three sampling grids (Port Moller, Cape Newenham and Nunivak Island) on the inner shelf of the southeast Bering Sea. Epibenthic scattering layers were observed during May–June and August–September in all three years. Acoustic data were scaled to euphausiid biomass using target strength models. Mean euphausiid biomass determined acoustically for each transect line was 0.7–21 g m−2, with most values below 5 g m−2. There was no consistent relationship between the distribution and biomass of euphausiids and the location of the Inner Front. Zero age pollock were observed on the inner shelf in August–September during all years, but were confined primarily to the stratified side of the Inner Front and to the frontal regime. The acoustic data for pollock were scaled to biomass using laboratory measurements of gas bladder dimensions and target strength models. Acoustic determinations of mean transect biomass for euphausiids did not differ from literature values for the inner shelf of the southeast Bering Sea, and pollock biomass on the inner shelf did not differ from that around the Pribilof Islands. Despite recent anomalies in climate and oceanographic conditions on the inner shelf, and high mortality of shorttail shearwaters during 1997, we found no evidence of significant interannual differences in the biomass of euphausiids or zero-age pollock on the inner shelf of the southeast Bering Sea.  相似文献   

6.
Phytoplankton growth and microzooplankton grazing rates were measured by the dilution technique in the subarctic North Pacific Ocean along a west–east transect during summer 1999. Average phytoplankton growth rates without added nutrients (μ0) were 0.33, 0.41, 0.20 and 0.49 d−1 for the four regions sampled: the Western Gyre, the Bering Sea, the Gulf of Alaska gyre and stations along the Aleutian Trench. Average grazing mortality rates (m) were 0.34, 0.27, 0.20 and 0.49 d−1. Limitation of phytoplankton growth by macronutrients, such as NO3 and SiO2, was identified only at a few stations, with overall μ0/μn (μn is nutrient-enhanced growth rate) averaging 0.9. Phytoplankton growth and microzooplankton grazing were approximately balanced, as indicated by high m/μ0 ratio, except in the Bering Sea, where the m/μ0 ratio was 0.65, indicating the relative importance of the diatom-macrozooplankton grazing food chain and possible higher export flux to the deep layer. Flow cytometric analysis revealed that the growth rates of picoplankton (Synechococcus and picoeukaryotes) were usually much lower than the total phytoplankton community growth rates estimated from chlorophyll a, except for stations in the Gulf of Alaska Gyre, where the growth rates for different populations were about the same. Lower than community-average growth rate for picoplankton indicates larger phytoplankters, presumably diatoms, were growing at a much faster rate. Suppressed phytoplankton growth in the Gulf of Alaska was probably a result of iron limitation.  相似文献   

7.
The subarctic North Pacific is one of the three major high nitrate low chlorophyll (HNLC) regions of the world. The two gyres, the NE and the NW subarctic Pacific gyres dominate this region; the NE subarctic Pacific gyre is also known as the Alaska Gyre. The NE subarctic Pacific has one of the longest time series of any open ocean station, primarily as a result of the biological sampling that began in 1956 on the weathership stationed at Stn P (50°N, 145°W; also known as Ocean Station Papa (OSP)). Sampling along Line P, a transect from the coast (south end of Vancouver Island) out to Stn P has provided valuable information on how various parameters change along this coastal to open ocean gradient. The NW subarctic Pacific gyre has been less well studied than the NE gyre. This review focuses mainly on the NE gyre because of the large and long term data set available, but makes a brief comparison with the NW gyre. The NE gyre has saturating NO3 concentrations all year (winter = about 16 μM and summer = about 8 μM), constantly very low chlorophyll (chl) (usually <0.5 mg m−3) which is dominated by small cells (<5 μm). Primary productivity is low (about 300–600 mg C m−2 d−1 and varies little (2 times) seasonally. Annual primary productivity is 3 to 4 times higher than earlier estimates ranging from 140 to 215 g C m−2 y−1. Iron limits the utilization of nitrate and hence the primary productivity of large cells (especially diatoms) except in the winter when iron and light may be co-limiting. There are observations of episodic increases in chl above 1 mg m−3, suggesting episodic iron inputs, most likely from Asian dust in the spring/early summer, but possibly from horizontal advection from the Alaskan Gyre in summer/early fall. The small cells normally dominate the phytoplankton biomass and productivity, and utilize the ammonium produced by the micrograzers. They do not appear to be Fe-limited, but are controlled by microzooplankton grazers. The NW Subarctic Gyre has higher nutrient concentrations and a shallower summer mixed depth and photic zone than Stn P in the NE gyre. Chl concentrations tend to be higher (0.5 to 1.5 μg L−1) than Stn P, but primary productivity in the summer is similar to Stn P (600 mg C m−2 d−1). There are no seasonal data from this gyre. Iron enrichment experiments in October, resulted in an increase in chl (mainly the centric diatom Thalassiosira sp.) and a draw down of nitrate, suggesting that large phytoplankton are Fe-limited, similar to Stn P.  相似文献   

8.
The zooplankton community of the subarctic Pacific is relatively simple, and contains a similar set of major species in all deep water areas of the subarctic Pacific. Their role in the food web varies considerably between coastal and offshore locations. In the oceanic gyres, microzooplankton and other mesozooplankton taxa replace phytoplankton as the primary food source for the dominant mesozooplankton species. Micronekton and larger zooplankton probably replace pelagic fish as major direct predators. Productivity and upper ocean biomass concentrations are intensely seasonal, in part because of seasonality of the physical environment and food supply, but also because of life history patterns involving seasonal vertical migrations (400–2000 m range) and winter dormancy. During the spring–summer season of upper ocean growth, small scale horizontal and vertical patchiness is intense. This can create local zones of high prey availability for predators such as planktivorous fish, birds, and marine mammals. On average, the cores of the subarctic gyres have lower biomass and productivity than the margins of the gyres. There is also some evidence that the Western Gyre is more productive than the Alaska Gyre, but more research is needed to confirm whether this east–west gradient is permanent. There is increasing evidence that the pattern of zooplankton productivity is changing over time, probably in response to interdecadal ocean climate variability. These changes include 2–3 fold shifts in total biomass, 30–60 day shifts in seasonal timing, and 10–25% changes in average body length.  相似文献   

9.
We describe the distribution and abundance of the midwater fish community, between 200 m and 500 m, in the North Pacific. The main area of interest was the Subarctic Pacific gyres, but we include species from the Bering Sea and the Sea of Okhotsk. There were 196 species identified in each gyre, 38 of which were common to both gyres. The most abundant species belong to the family Myctophidae and the most ecologically important myctophid probably is Stenobrachius leucopsarus. This species could have a biomass of approximately 21 million tonnes (t) in the Subarctic Pacific (including the Bering Sea and Sea of Okhotsk). S. leucopsarus is a small (about 8 cm maximum length) fish that lives up to 7 years. It is prey for a variety of other fishes, birds and mammals and may migrate into the mixing layer each evening where it feeds mainly on euphausiids and copepods.The total abundance of midwater fishes appears to be large relative to total catches of other fish in the same areas. The vertical migratory behaviour of some of the residents provides a mechanism to transfer production out of the mixing layer. The movement into the surface layer by some fishes at night indicates that dynamic changes occur in the midwater community between the day and night, and the ecosystem dynamics in the surface layer are different in the day and in the night. This behaviour and the huge biomass relative to commercial species means that the dynamics of fish communities in the Subarctic Pacific are complex and need to be studied over a 24 hour period. The large biomasses may eventually attract commercial interest, thus it is important to establish international, cooperative programs now to learn more about the dynamics of these populations and the relationships with other species.  相似文献   

10.
Consumption of silicate and nitrate (Si:N molar ratio) in the upper layer of the pelagic subarctic Pacific in summer was evaluated by a regression analysis of silicate vs. nitrate concentrations at the upper 100 m depth. Based on data of three cruises, the pelagic subarctic Pacific can be classified into two groups. First group is characterized by roughly 1:1 consumption of silicate and nitrate, and occupies rather larger area of subarcfic Pacific, i.e., the Gulf of Alaska and the Western Subarctic gyre (averaged slope of Si:N linear regression: 1.21, n = 10 and 1.45, n = 9, respectively). Second group is the regions of the Bering Sea basin and the Oyashio region, and showed higher silicate consumption compared to that of nitrate (averaged slope of Si:N linear regression: 2.14, n = 9 and 2.36, n = 3, respectively). The Si:N difference observed is possibly attributed to relative contribution of diatoms production among the phytoplankton assemblages in the regions, i.e., dominance of diatoms production in the regions of the second group. Higher accumulation of ammonium at the bottom of euphotic layer in the summer Bering Sea basin would also contribute to increase consumption ratio of Si:N amounts.  相似文献   

11.
Seasonal changes in mesozooplankton biomass and their community structures were observed at time-series stations K2 (subarctic) and S1 (subtropical) in the western North Pacific Ocean. At K2, the maximum biomass was observed during the spring when primary productivity was still low. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 1.39 (day) and 2.49 (night) g C m?2 and 4.00 (day) and 3.63 (night) g C m?2, respectively. Mesozooplankton vertical distribution was bimodal and mesopelagic peak was observed in a 200- to 300-m layer; it mainly comprised dormant copepods. Copepods predominated in most sampling layers, but euphausiids were dominant at the surface during the night. At S1, the maximum biomass was observed during the spring and the peak timing of biomass followed those of chlorophyll a and primary productivity. The annual mean biomasses in the euphotic and 200- to 1000-m layers were 0.10 (day) and 0.21 (night) g C m?2 and 0.47 (day) and 0.26 (night) g C m?2, respectively. Copepods were dominant in most sampling layers, but their mean proportion was lower than that in K2. Mesozooplankton community characteristics at both sites were compared with those at other time-series stations in the North Pacific and with each other. The annual mean primary productivities and sinking POC fluxes were equivalent at both sites; however, mesozooplankton biomasses were higher at K2 than at S1. The difference of biomasses was probably caused by differences of individual carbon losses, population turnover rates, and trophic structures of communities between the two sites.  相似文献   

12.
The seasonal and interannual changes in surface nutrients, dissolved inorganic carbon (DIC) and total alkalinity (TA) were recorded in the North Pacific (30–54°N) from 1995 to 2001. This study focuses on the region north of the subarctic boundary (∼40°N) where there was extensive monthly coverage of surface properties. The nutrient cycles showed large interannual variations in the eastern and western subarctic gyres. In the Alaska Gyre the seasonal depletion of nitrate (ΔNO3) increased from 8–14 μmol kg−1 in 1995–1999 to 21.5 μmol kg−1 in 2000. In the western subarctic the shifts were similar in amplitude but more frequent. The large ΔNO3 levels were associated with high silicate depletions, indicating enhanced diatom production. The seasonal DIC:NO3 drawdown ratios were elevated in the eastern and central subarctic due to calcification. In the western subarctic and the central Bering Sea calcification was significant only during 1997 and/or 1998, two El Ni?o years. Regional C/N stoichiometric molar ratios of 5.7 to 7.0 (>40°N) were determined based on the years with negligible or no calcification. The annual new production (NPa) based on ΔNO3 and these C/N ratios showed large interannual variations. NPa was usually higher in the western than in the eastern subarctic. However, values of 84 gC m−2yr−1 were found in the Alaska Gyre in 2000 which is similar to that in the most productive provinces of the northern North Pacific. There were also large increases in NPa around the Alaska Peninsula in 1997 and 1998. Finally, the net removal of carbon by the biological pump was estimated as 0.72 Gt C yr−1 in the North Pacific (>30°N). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
A review of oceanographic and climate data from the North Pacific and Bering Sea has revealed climate events that occur on two principal time scales: a) 2–7 years (i.e. El Niño Southern Oscillation, ENSO), and b) inter-decadal (i.e. Pacific Decadal Oscillation, PDO). The timing of ENSO events and of related oceanic changes at higher latitudes were examined. The frequency of ENSO was high in the 1980s. Evidence of ENSO forcing on ocean conditions in the North Pacific (Niño North conditions) showed ENSO events were more frequently observed along the West Coast than in the western Gulf of Alaska (GOA) and Eastern Bering Sea (EBS). Time series of catches for 30 region/species groups of salmon, and recruitment data for 29 groundfish and 5 non-salmonid pelagic species, were examined for evidence of a statistical relationship with any of the time scales associated with Niño North conditions or the PDO. Some flatfish stocks exhibited high autocorrelation in recruitment coupled with a significant step in recruitment in 1977 suggesting a relationship between PDO forcing and recruitment success. Five of the dominant gadid stocks (EBS and GOA Pacific cod, Pacific hake and EBS and GOA walleye pollock) exhibited low autocorrelation in recruitment. Of these, Pacific hake, GOA walleye pollock and GOA Pacific cod exhibited significantly higher incidence of strong year classes in years associated with Niño North conditions. These findings suggest that the PDO and ENSO may play an important role in governing year-class strength of several Northeast Pacific marine fish stocks.  相似文献   

14.
Copepodites of Neocalanus plumchrus dominate the macrozooplankton biomass of the subarctic Pacific during spring. Living specimens have patches of bright red-orange pigment. During May of 1984 it was found sharing dominance with another, related species with differently placed patches of more distinctly red pigment. This is an undescribed species, which is designated here as Neocalanus flemingeri sp. nov. In the Gulf of Alaska it is smaller than N. plumchrus, but in the Bering Sea where food supplies are greater it reaches dimensions as large or larger. The morphologies of the two species are distinct, and previous confusion in the taxonomy of these forms was caused by differences in their life histories.  相似文献   

15.
We examined inflow through Unimak Pass (<200 m deep), which is the only major connection between the shelves of the North Pacific Ocean and the eastern Bering Sea. Geostrophic transport was generally northward from the Gulf of Alaska into the Bering Sea. The flow through the pass appeared to be modulated by the seasonal cycle of freshwater discharge. On shorter time scales, transport also was affected by semi-daily variations in tidal mixing. This effect was significant and not anticipated. Near-bottom currents, measured from moorings, were maximum during winter, and significantly correlated (r=0.7) with the alongshore winds. Although the flow through Unimak Pass transported some nutrients from the North Pacific Ocean, the Gulf of Alaska shelf is not the major source of nutrients to the Bering Sea shelf.  相似文献   

16.
This study documents the results of a multi-sensor satellite investigation aimed at comparing the seasonality and interannual variability of phytoplankton biomass and primary productivity (PP) in the western and eastern gyres of the subarctic Pacific. Satellite data helped discern several features, most importantly the existence of significant east-west gradients in the supply of nitrate in winter, in the consumption of nitrate by phytoplankton and in phytoplankton production and biomass accumulation over the growth season. In the western subarctic gyre many of these features appear to be regulated by the strength of sea surface winds through increased iron and nitrate inputs. Multiple regression analysis of data extracted from 12 boxes spanning different hydrographic regimes in the subarctic Pacific, showed that over 65% of the variations in PP in the subarctic Pacific could be explained solely on the basis of changes in the strength of sea surface winds and the intensity of incident irradiance (PAR). The dependence of PP on sea surface wind stress was far greater in the western subarctic Pacific Gyre (WSG), than in the Alaskan Gyre (ALG) due to diminishing impact of surface winds towards the east. Spring accumulation of phytoplankton biomass was greater in the WSG than in the ALG despite the higher rates of PP in the latter. This study assumes particular significance because it helps ascertain the existence of several sub-regions within the two broader domains of the WSG and the ALG. In addition, large interannual variations in phytoplankton biomass and PP were observed in the subarctic Pacific following the onset of the El-Niño event of 1997 and the transition to La-Niña conditions in 1999. These variations were largely the result of differences in meteorological and oceanographic conditions across the subarctic Pacific following the development of the El-Niño.  相似文献   

17.
We survey the recent progress in studies of North Pacific Intermediate Water (NPIW) in SAGE (SubArctic Gyre Experiment), including important results obtained from related projects. Intensive observations have provided the transport distributions relating to NPIW and revealed the existence of the cross-wind-driven gyre Oyashio water transport that flows directly from the subarctic to subtropical gyres through the western boundary current as well as the diffusive contribution across the subarctic front. The anthropogenic CO2 transport into NPIW has been estimated. The northern part of NPIW in the Transition Domain east of Japan is transported to the Gulf of Alaska, feeding the mesothermal (intermediate temperature maximum) structure in the North Pacific subarctic region where deep convection is restricted by the strong halocline maintained by the warm and salty water transport originating from NPIW. This heat and salt transport is mostly balanced by the cooling and freshening in the formation of dense shelf water accompanied by sea-ice formation and convection in the Okhotsk Sea. Intensive observational and modeling studies have substantially altered our view of the intermediate-depth circulation in the North Pacific. NPIW circulations are related to diapycnal-meridional overturning, generated around the Okhotsk Sea due to tide-induced diapycnal mixing and dense shelf water formation accompanied by sea-ice formation in the Okhotsk Sea. This overturning circulation may possibly explain the direct cross-gyre transport through the Oyashio along the western boundary from the subarctic to subtropical gyres. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Sediment trap arrays were deployed at two deep ocean stations, one in the Bering Sea and the other in the Gulf of Alaska, in the summer of 1975. The sediment trap was constructed of a pair of polyethylene cylinders (0.185 m2 opening) with funnel-shaped bases. The trap is equipped with a lid which is closed before recovery by a tripping messenger system triggered by an electric time release. 37–68% of the total organic carbon fluxes (37–38% in the Bering Sea; 48–68% in the Gulf of Alaska) were represented by large particles (67µm<) such as fecal matter and fecal pellets which contributed minor fractions to the total particulate organic matter concentration in sea water. The total fluxes were 11.1 and 14.2 mg C m–2d–1 at 1,510 and 2,610 m respectively at the station (3,800 m) in the Bering Sea, and were 7.60, 4.66 and 3.27 mg C m–2d–1 at 900, 1,500 and 1,875 m respectively at the station (4,150 m) in the Gulf of Alaska. The former values are several times greater than the latter, suggesting that there is a regional variation in the vertical carbon flux in deep layers. The fluxes were approximately equivalent to 1 to 3% of primary productivity in the overlying surface layers. These observations suggest that deep-water ecosystems may be influenced by relatively rapid sinking of large particles such as fecal matter and fecal pellets from near surface production.  相似文献   

19.
A column concentration-high resolution inductively coupled plasma mass spectrometry (ICP-MS) determination was applied to measure the total dissolved concentrations of Fe, Co, Ni, Cu and Zn in seawater collected from the subarctic North Pacific (~45°N) and the Bering Sea in July–September 1997. Total adsorbable Mn was determined on board by column electrolysis preconcentration and chemiluminescence detection. The vertical profiles for Fe, Ni and Zn were nutrient-like. The deep water concentration of Fe was ~0.5 nM in the northeast Pacific (18°-140°W) and increased to ~1 nM in the northwest Pacific (161°E) and ~2 nM in the Bering Sea (57°N, 180°E). The deep water concentrations for Ni and Zn in the Bering Sea were also 1.3–2 times higher than in the North Pacific. The profiles for Co and Cu were examined in the subarctic North Pacific, and results obtained were consistent with previous reports. There was a significant correlation between the concentrations of Co and Mn except for surface mixed layer. The profiles for total adsorbable Mn were similar to the reported profiles for total dissolvable Mn. The deep water concentration of Mn in the Bering Sea was also 4 times higher than in the North Pacific. Iron and zinc were depleted in surface water of the subarctic North Pacific. The relationship between these trace elements and nutrients suggests that these elements could be a limiting factor of phytoplankton productivity. In the Bering Sea, surface water contained ~0.3 nM of Fe. The Zn concentration, which was less than the detection limit in surface water, increased at shallower depths (~30 m) compared with the subarctic North Pacific. These results imply a higher flux of Fe and Zn to surface water in the Bering Sea. This in turn may cause the ecosystem in the Bering Sea characterized by a dominance of diatoms and high regenerated production.  相似文献   

20.
A 9-year study of planktonic foraminifer fluxes was conducted in the Bering Sea (Station AB) and in the central subarctic Pacific (Station SA). Results clearly reflected variations of the water mass characteristics in the upper layers. The 9-year means of total foraminifer fluxes were the same (1400 shells m−2 d−1) at both stations. However, total foraminifer flux at Station AB tended to show its primary maximum during fall (October–December) and its secondary maximum in spring (April–June), whereas the primary maximum appeared in spring and the secondary maximum in fall at Station SA. Seasonal variation was more apparent at hemipelagic Station AB than at pelagic Station SA. Planktonic foraminifers found at both stations were of six species: Neogloboquadrina pachyderma, Globigerina umbilicata, Globigerinita glutinata, Globigerina quinqueloba, Globorotalia wilesi, and Orbulina universa. The foraminifer assemblages at the two stations reflected the temperature difference in the surface waters. The variable %G. umbilicata tended to be high in the warm surface waters during the summers. The temporal and geographical variation of %G. quinqueloba indicated that this taxon prefers regions with relatively low diatom fluxes. A notable appearance of O. universa occurred in 1997 at Station SA. During this period, other measured biogenic particle fluxes, such as those of diatoms, were low. This unusual 1997 event may be a reflection of global climatic change that happened to be observed in the central subarctic Pacific Ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号