首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The birth process and (early) evolution of massive stars is still poorly understood. Massive stars are rare, their birthplaces are hidden from view and their formation timescale is short. So far, our physical knowledge of these young massive stars has been derived from near‐IR imaging and spectroscopy, revealing populations of young OB‐type stars, some still surrounded by a (remnant?) accretion disk, others apparently “normal” main sequence stars powering H II regions. The most important spectral features of OB‐type stars are, however, located in the UV and optical range. With VLT/X‐shooter it is possible to extend the spectral coverage of these young massive stars into the optical range, to better determine their photospheric properties, to study the onset of the stellar wind, and to characterize the physical structure of the circumstellar disk (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Asteroseismology studies stars with a wide variety of interior and surface conditions. For two decades asteroseismic techniques have been applied to many pulsating stars across the HR diagram. Asteroseismology is now a booming field of research with stunning new discoveries; I highlight a personal selection of these in this review, many of which are discussed in more detail elsewhere in these proceedings. For many years the Nainital-Cape Survey for northern roAp stars has been running at ARIES, so I emphasise new spectroscopic results for roAp stars and point out the outstanding prospects for the planned ARIES 3-m telescope at Devastai. High precision spectroscopy has revolutionised the asteroseismic study of some types of stars — particularly solar-like oscillators and roAp stars — while photometry is still the best way to study the frequency spectra that are the basic data of asteroseismology. New telescopes, new photometers and space missions are revolutionising asteroseismic photometry. In addition to the ground-based potential of asteroseismic spectroscopy, India has the knowledge and capability for space-based asteroseismic photometry. The future for asteroseismology is bright indeed, especially for Indian astronomers.  相似文献   

3.
We present an analysis of the faint M star population seen as foreground contaminants in deep extragalactic surveys. We use space-based data to separate such stars from high-redshift galaxies in a publicly available data set, and consider the photometric properties of the resulting sample in the optical and infrared. The inferred distances place these stars well beyond the scaleheight of the thick disc. We find strong similarities between this faint sample (reaching   i 'AB= 25  ) and the brighter disc M dwarf population studied by other authors. The optical–infrared properties of the bulk of our sources spanning 6000 Å-4.5 μm are consistent with those 5–10 mag brighter. We also present deep spectroscopy of faint M dwarf stars reaching continuum limits of i 'AB≈ 26, and measure absorption-line strengths in the CaH2 and TiO5 bands. Both photometrically and spectroscopically, our sources are consistent with metallicities as low as a tenth solar: metal-rich compared with halo stars at similar heliocentric distances. We comment on the possible massive astrophysical compact halo object (MACHO) identification of M stars at faint magnitudes.  相似文献   

4.
XMM‐Newton and Chandra have boosted our knowledge about the X‐ray emission of early‐type stars (spectral types OB and Wolf‐Rayet). However, there are still a number of open questions that need to be addressed in order to fully understand the X‐ray spectra of these objects. Many of these issues require high‐resolution spectroscopy or monitoring of a sample of massive stars. Given the moderate X‐ray brightness of these targets, rather long exposure times are needed to achieve these goals. In this contribution, we review our current knowledge in this field and present some hot topics that could ideally be addressed with XMM‐Newton over the next decade. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
The internal properties of stars in the red-giant phase undergo significant changes on relatively short timescales. Long near-uninterrupted high-precision photometric timeseries observations from dedicated space missions such as CoRoT and Kepler have provided seismic inferences of the global and internal properties of a large number of evolved stars, including red giants. These inferences are confronted with predictions from theoretical models to improve our understanding of stellar structure and evolution. Our knowledge and understanding of red giants have indeed increased tremendously using these seismic inferences, and we anticipate that more information is still hidden in the data. Unraveling this will further improve our understanding of stellar evolution. This will also have significant impact on our knowledge of the Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our understanding of the formation and structure of planetary systems.  相似文献   

6.
Direct N -body calculations are presented of the formation of Galactic clusters using GasEx , which is a variant of the code Nbody6 . The calculations focus on the possible evolution of the Orion nebula cluster (ONC) by assuming that the embedded OB stars explosively drove out 2/3 of its mass in the form of gas about 0.4 Myr ago. A bound cluster forms readily and survives for 150 Myr despite additional mass loss from the large number of massive stars, and the Galactic tidal field. This is the very first time that cluster formation is obtained under such realistic conditions. The cluster contains about 1/3 of the initial 104 stars, and resembles the Pleiades cluster to a remarkable degree, implying that an ONC-like cluster may have been a precursor of the Pleiades. This scenario predicts the present expansion velocity of the ONC, which will be measurable by upcoming astrometric space missions. These missions should also detect the original Pleiades members as an associated expanding young Galactic-field subpopulation. The results arrived at here suggest that Galactic clusters form as the nuclei of expanding OB associations.
The results have wide implications, also for the formation of globular clusters and the Galactic-field and halo stellar populations. In view of this, the distribution of binary orbital periods and the mass function within and outside the model ONC and Pleiades is quantified, finding consistency with observational constraints. Advanced mass segregation is evident in one of the ONC models. The calculations show that the primordial binary population of both clusters could have been much the same as is observed in the Taurus–Auriga star-forming region. The computations also demonstrate that the binary proportion of brown dwarfs is depleted significantly for all periods, whereas massive stars attain a high binary fraction.  相似文献   

7.
We present a brief overview of the theory of stellar winds with a strong emphasis on the radiation-driven outflows from massive stars. The resulting implications for the evolution and fate of massive stars are also discussed. Furthermore, we relate the effects of mass loss to the angular momentum evolution, which is particularly relevant for the production of long and soft gamma-ray bursts. Mass-loss rates are not only a function of the metallicity, but are also found to depend on temperature, particularly in the region of the bi-stability jump at 21 000 Kelvin. We highlight the role of the bi-stability jump for Luminous Blue Variable (LBV) stars, and discuss suggestions that LBVs might be direct progenitors of supernovae. We emphasize that radiation-driven wind studies rely heavily on the input opacity data and linelists, and that these are thus of fundamental importance to both the mass-loss predictions themselves, as well as to our overall understanding of the lives and deaths of massive stars.  相似文献   

8.
9.
Recent UV observations of the most massive Galactic globular clusters show a significant population of hot stars below the zero-age HB (“blue hook” stars), which cannot be explained by canonical stellar evolution. Stars which suffer unusually large mass loss on the red giant branch and thus experience the helium-core flash while descending the white dwarf cooling curve could populate this region. They should show higher temperatures than the hottest canonical HB stars and their atmospheres should be helium-rich and probably C/N-rich. We have obtained spectra of blue hook stars in ω Cen and NGC 2808 to test this possibility. Our analysis shows that the blue hook stars in these clusters reach effective temperatures well beyond the hot end of the canonical EHB and have higher helium abundances than canonical EHB stars. These results support the hypothesis that the blue hook stars arise from stars which ignite helium on the white dwarf cooling curve.  相似文献   

10.
The study of the stellar constituents of star-forming sites in a wide variety of conditions yields the key to interpreting wide-field UV-optical imaging of extended nearby galaxies, and of distant galaxies. We obtained six-band imaging (from far-UV to I) with HST-WFPC2 of 67 sites of recent star formation in eight Local Group galaxies. HST pointings were selected from GALEX wide-field FUV imaging, which traces the young stellar populations. The HST observations were optimized to characterize the hottest, most massive stars in these regions. From the HST photometry, analyzed with stellar model colors, we derived the physical parameters of the massive stars in each field, and of the extinction by interstellar dust. The HST results are used to interpret GALEX UV measurements of SF across the entire galaxies. Our comprehensive photometric study at HST resolution (sub-pc scale in these galaxies) also provides an ideal selection of targets for follow-up spectroscopy with large ground-based telescopes, and in the UV with HST- or WSO-class telescopes, to clarify the influence of metallicity on the properties and the evolution of massive stars.  相似文献   

11.
We report the discovery of 15 previously unknown Wolf–Rayet (WR) stars found as part of an infrared (IR) broad-band study of candidate WR stars in the Galaxy. We have derived an empirically based selection algorithm which has selected ∼5000 WR candidate stars located within the Galactic plane drawn from the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (mid-IR) and Two-Micron All-Sky Survey (near-IR) catalogues. Spectroscopic follow-up of 184 of these reveals 11 nitrogen-rich (WN) and four carbon-rich (WC) WR stars. Early WC subtypes are absent from our sample and none shows evidence for circumstellar dust emission. Of the candidates which are not WR stars, ∼120 displayed hydrogen emission-line features in their spectra. Spectral features suggest that the majority of these are in fact B supergiants/hypergiants, ∼40 of these are identified Be/B[e] candidates.
Here, we present the optical spectra for six of the newly detected WR stars, and the near-IR spectra for the remaining nine of our sample. With a WR yield rate of ∼7 per cent and a massive star detection rate of ∼65 per cent, initial results suggest that this method is one of the most successful means for locating evolved, massive stars in the Galaxy.  相似文献   

12.
The evolution of massive stars is only partly understood. Observational constraints can be obtained from the study of massive stars located in young massive clusters. The ESO Public Survey “VISTA Variables in the Vía Lácteá (VVV)” discovered several new clusters hosting massive stars. We present an analysis of massive stars in four of these new clusters. Our aim is to provide constraints on stellar evolution and to better understand the relation between different types of massive stars. We use the radiative transfer code CMFGEN to analyse K-band spectra of twelve stars with spectral types ranging from O and B to WN and WC. We derive the stellar parameters of all targets as well as surface abundances for a subset of them. In the Hertzsprung–Russell diagram, the Wolf–Rayet stars are more luminous or hotter than the O stars. From the log(C/N)–log(C/He) diagram, we show quantitatively that WN stars are more chemically evolved than O stars, WC stars being more evolved than WN stars. Mass loss rates among Wolf–Rayet stars are a factor of 10 larger than for O stars, in agreement with previous findings.  相似文献   

13.
Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.  相似文献   

14.
We study the inhomogeneous reionization in a critical density CDM universe resulting from stellar sources, including Population III objects. The spatial distribution of the sources is obtained from high-resolution numerical N -body simulations. We calculate the source properties, taking into account a self-consistent treatment of both radiative (i.e. ionizing and H2-photodissociating photons) and stellar (i.e. SN explosions) feedbacks regulated by massive stars. This allows us to describe the topology of the ionized and dissociated regions at various cosmic epochs, and to derive the evolution of H, He and H2 filling factors, soft UV background, cosmic star formation rate and the final fate of ionizing objects. The main results are: (i) galaxies reionize the intergalactic medium by z ≈10 (with some uncertainty related to the gas clumping factor), whereas H2 is completely dissociated already by z ≈25; (ii) reionization is mostly caused by the relatively massive objects which collapse via H line cooling, while objects the formation of which relies on H2 cooling alone are insufficient for this purpose; (iii) the diffuse soft UV background is the major source of radiative feedback effects for z ≤15; at higher z direct flux from neighbouring objects dominates; (iv) the match of the calculated cosmic star formation history with that observed at lower redshifts suggests that the conversion efficiency of baryons into stars is ≈1 per cent; (v) we find that a very large population of dark objects which failed to form stars is present by z ≈8. We discuss and compare our results with similar previous studies.  相似文献   

15.
Important insights into the formation, structure, evolution and environment of all types of stars can be obtained through the measurement of their winds and possible magnetospheres. However, this has hardly been done up to now mainly because of the lack of UV instrumentation available for long periods of time. To reach this aim, we have designed UVMag, an M-size space mission equipped with a high-resolution spectropolarimeter working in the UV and visible spectral range. The UV domain is crucial in stellar physics as it is very rich in atomic and molecular lines and contains most of the flux of hot stars. Moreover, covering the UV and visible spectral domains at the same time will allow us to study the star and its environment simultaneously. Adding polarimetric power to the spectrograph will multiply tenfold the capabilities of extracting information on stellar magnetospheres, winds, disks, and magnetic fields. Examples of science objectives that can be reached with UVMag are presented for pre-main sequence, main sequence and evolved stars. They will cast new light onto stellar physics by addressing many exciting and important questions. UVMag is currently undergoing a Research & Technology study and will be proposed at the forthcoming ESA call for M-size missions. This spectropolarimeter could also be installed on a large UV and visible observatory (e.g. NASA’s LUVOIR project) within a suite of instruments.  相似文献   

16.
《New Astronomy》2007,12(6):441-445
The discovery of optical jets immersed in the strong UV radiation field of the Rosette Nebula sheds new light on, but meanwhile poses challenges to, the study of externally irradiated jets. The jet systems in the Rosette are found to have a high state of ionization and show unique features. In this paper, we investigate the evolutionary status of the jet-driving sources for young solar-like stars. To our surprise, these jet sources indicate unexpected near infrared properties with no excess emission. They are bathed in harsh external UV radiation such that evaporation leads to a fast dissipation of their circumstellar material. This could represent a transient phase of evolution of young solar-like stars between classical and weak lined T Tauri stars. Naked T Tauri stars formed in this way have indistinguishable evolutionary ages from those of classical T Tauri stars resulting from the same episode of star formation. However, it would be hard for such sources to be identified if they are not driving an irradiated jet in a photoionized medium.  相似文献   

17.
We present results of an analysis of a UV image in the direction of Ophiuchus, obtained with the FAUST instrument. The image contains 228 UV sources. Most of these are identified as normal early-type stars through correlations with catalogued objects. For the first time in this project we identify UV sources as such stars by selecting suitable candidates in crowded fields as the bluest objects in colour–colour diagrams using observations from the Wise Observatory. These candidates are then studied using low-resolution spectroscopy, which allows the determination of spectral types to an accuracy of about one-half class, for 60 stars.
Synthetic photometry of spectral data is performed in order to predict the expected UV emission, on the basis of the photometric information. These results are used along with the Hipparcos /Tycho information, to search for subluminous stars. The comparison of the predicted emission with the FAUST measured magnitudes allows us to select 12 stars as highly probable evolved hot stars. High signal-to-noise spectra are obtained for nine of these stars, and Balmer line profiles are compared with the prediction of atmosphere models and with the spectrum of real stellar atmospheres. Among the nine candidates, six are classified as previously unrecognized sdB stars, and two as white dwarfs. Our result indicates that indeed more bright subluminous stars are still unrecognized in the existing samples.  相似文献   

18.
Early type massive stars drive thin, dense shells whose edges often show evidence of star-formation. The possibility of fragmentation of these shells, leading to the formation of putative star-forming clumps is examined with the aid of semi-analytic arguments. We also derive a mass-spectrum for clumps condensing out of these shells by performing Monte–Carlo simulations of the problem. By extending on results from our previous work on the stability of thin, dense shells, we argue that clump-mass estimated by other authors in the past, under a set of simplifying assumptions, are several orders of magnitude smaller than those calculated here. Using the expression for the fastest growing unstable mode in a shock-confined shell, we show that fragmentation of a typical shell can produce clumps with a typical mass ?103  M. It is likely that such clumps could spawn a second generation of massive and/or intermediate-mass stars which could in turn, trigger the next cycle of star-formation. We suggest that the ratio of shell thickness-to-radius evolves only weakly with time. Calculations have been performed for stars of seven spectral types, ranging from B1 to O5. We separately consider the stability of supernova remnants.  相似文献   

19.
The actual knowledge on Horizontal Branch stars of the metal-poor Globular Clusters of our Galaxy suggests that these stars evolve along the Horizontal Branch from the very blue stars towards lower effective temperature.From this behaviour it follows that a substantial mass loss occurs at the He-flash. On the basis of a gravitational thermalization of Horizontal Branch stars any recent observational data concerning NGC 7006 are re-examined. It is pointed out that today it is not necessary to leave the hypothesis of a strong correlation between the metal and helium content for our Galaxy.At present at the Osservatorio Astronomico, Bologna.  相似文献   

20.
大质量恒星演化研究   总被引:1,自引:0,他引:1  
由于高光度和高质量损失率等特性,大质量恒星在星系形成和演化等现代天体物理学的研究中扮演着重要的角色。自上世纪中叶以来,恒星物理研究揭示了大质量恒星内部结构和演化的主要特性,并且构造了一些大质量恒星的演化模型。然而,近年来对大质量恒星的观测表明,已有的这些理论演化模型与观测结果之间存在着严重的分歧。在主导大质量恒星演化最主要因素(即质量损失、内部对流等问题)的处理上,现有的理论有很大的缺陷。综述了目前对上述这些问题的研究现状,并探讨了今后的研究方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号