首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黄河源区冻土分布制图及其热稳定性特征模拟   总被引:5,自引:0,他引:5  
以黄河源区多年冻土分布现状和热力特征为研究目标,通过野外调查及实测数据,分析了黄河源区不同地形地貌、不同地表覆盖条件下的冻土形成、分布特征和以地温为基础的热学特征,探讨了不同尺度因素对多年冻土分布的影响。结果表明,在高程低于4 300 m的平原区,多年冻土多不发育;在高于4 350 m的山区,局地地形对多年冻土的形成与分布作用显著。除阳坡地形外,多年冻土均比较发育;介于4 300~4 350 m的低山丘陵和平原区,局地地形、地表植被、土壤湿度等因素共同决定着多年冻土的形成和分布格局。以年均地温指标为基础,构建了以纬度、经度和高程为自变量的回归模型,并对阳坡地形进行微调和校正。结果表明,以0oC作为划分季节冻土和多年冻土的标准和界限,多年冻土面积2.5×104km2,约占整个源区面积的85.1%;季节冻土面积0.3×104km2,约占整个源区面积的9.7%。进一步以0.5oC或1.0oC为分类间隔绘制了黄河源区多年冻土热稳定性空间分布图。  相似文献   

2.
Finnish Lapland north of 68°30'N latitude is located in the zone of discontinuous permafrost. Two main types of permafrost have previously been found in northern Finland: palsas in the mires and frost in the bedrock on the barren fell summits. The aim of this study was (1) to investigate permafrost occurrence in the peaty earth hummocks (pounus) in several mires, and (2) model characteristics of pounus with and without permafrost.
This study showed that permafrost in Finnish Lapland occurs much more widely and commonly than was previously known. A total of 59% of the studied pounus were found to contain permafrost. Over 90% of the permafrost occurrence in the pounus was correctly classified in logistic regression modelling. The probability of permafrost in a pounu decreased with the height of vegetation, and increased with the pounu height and distance from the running stream. There were clear vegetation differences between pounus with and without permafrost. Unfrozen pounus are characterized by forest and mire species, whereas on the permanently frozen pounus the vegetation is patchier with species indicating drier conditions. Pounus provide an excellent object to study short–term and local variations in permafrost formation due to their small size. They react quickly to variation in temperature, snow depth and precipitation. We conclude that pounus can be classified as sporadic permafrost features in northernmost Europe under modern climatic conditions.  相似文献   

3.
大小兴安岭多年冻土的主导成因及分布模式   总被引:6,自引:0,他引:6  
大小兴安岭海拔高度由北向南增高对纬度偏低带来的温升具有相对补偿功能,从而使冻土分区界线大大南凸。大兴安岭山地为一个连续的整体,不宜仅将南部视为山地多年冻土,而将中、北部划为高纬多年冻土。多年冻土南界应在黄岗梁山南麓通过。小兴安岭的多年冻土南界应在呼兰河源中山的南麓通过。大兴安岭北端断续多年冻土区应将伊勒呼里山平均海拔1000 m的中山部分包括在内;岛状融区多年冻土区南伸至阿尔山附近终结;小兴安岭南端汤旺河与呼兰河的河源区存在岛状融区多年冻土闭合圈。  相似文献   

4.
通过Pearson相关性分析,选取对青藏高原工程走廊多年冻土分布影响较大、在GIS技术支持下较容易量化的坡向因子,结合走廊内2000—2010年29个钻孔点的地温监测数据,建立了年均地温与坡向、纬度和高程的关系模型。根据高原冻土工程地温分带指标,制作了工程走廊内符合实际的冻土分布图,由面积统计结果知:多年冻土区占整个区域的94.06%,其中,低温稳定带占多年冻土区面积的15.94%,主要分布在风火山和可可西里的高山基岩区;低温基本稳定带占16.97%,主要分布在风火山及可可西里丘陵地带;高温不稳定带占48%,主要分布于可可西里和北麓河盆地东缘;高温极不稳地带占19.09%,主要分布于北麓河盆地和楚玛尔河高平原。  相似文献   

5.
In the offshore part of Beaufort–Mackenzie Basin depth of methane hydrate stability reaches more than 1.5 km. However, there are areas in the western part of the basin where there are no conditions of methane hydrate stability. Construction of the first contour maps displaying thickness of hydrate stability zones as well as hydrate stability zone thicknesses below permafrost in the offshore area, shows that these zones can reach 1200 m and 900 m, respectively. Depth to the base of ice-bearing relict permafrost under the sea (depth of the –1°C isotherm-ice-bearing permafrost base) and regional variations of geothermal gradient are the main controlling factors. Hydrostatic pressures in the upper 1500 m are the rule. History of methane hydrate stability zone is related mainly to the history of permafrost and it reached maximum depth in early Holocene. More recently, the permafrost and hydrate zone is diminishing because of sea transgression. Reevaluation of the location of possible gas hydrate occurrences is done from the analysis of well logs and other indicators in conjunction with knowledge of the hydrate stability zone. In the offshore Beaufort–Mackenzie Basin, methane hydrate occurs in 21 wells. Nine of these locations coincides with underlying conventional hydrocarbon occurrences. Previous analyses place some of the hydrate occurrences at greater depths than proposed for the methane hydrate-stability zone described in this study. Interpretation of geological cross sections and maps of geological sequences reveals that hydrates are occurring in the Iperk–Kugmallit sequence. Hydrate–gas contact zones, however, are possible in numerous situations. As there are no significant geological seals in the deeper part of the offshore basin (all hydrates are within Iperk), it is suggested that overlying permafrost and hydrate stability zone acted as the only trap for upward migrating gas during the last tens of thousand of years (i.e., Sangamonian to Holocene).  相似文献   

6.
The permafrost history of the high northern latitudes over the last two million years indicates that perennially frozen ground formed and thawed repeatedly, probably in close synchronicity with the climate changes that led to the expansion and subsequent shrinkage of continental ice sheets. The early stages of the Pleistocene are the least known and the changes that occurred in the Late Pleistocene and early Holocene are the best known.
Evidence that permafrost is degrading in response to the current global warming trend is difficult to ascertain. The clearest signals are probably provided by changes in permafrost distribution in the sub-Arctic regions. at the extreme southern fringes of the discontinuous permafrost zone.  相似文献   

7.
近30年来青藏高原西大滩多年冻土变化   总被引:32,自引:1,他引:31  
结合1975年已有勘探资料,对青藏高原多年冻土北界西大滩进行了雷达勘探。勘探发现,近30年来青藏高原多年冻土北界发生较大规模的多年冻土退化,多年冻土面积从1975年的160.5 km2退化成现在的141.0 km2,缩小约12%;开始出现多年冻土的最低高程为4 385 m,比1975年升高了25 m。近30年来研究区的气候变化是造成北界多年冻土退化的主要原因。相同气候背景下,多年冻土腹部地温有升高,但在30年尺度上不会发生明显的退化。本次冻土区域调查的结果可为检验冻土-气候关系模型的可靠与否提供依据。  相似文献   

8.
The thawing-melting of the permafrost damages the subground of highways on the Qinghai-Tibet Plateau. With the application of ground-penetrating-radar (GPR) technology, the maximum permafrost melting interface can be effectively distinctly differentiated and imaged. A hierarchical feature of the permafrost region is shown clearly on the imaging profile of GPR data. The complete ablation zone or part of it is displayed distinctly. In addition, the details of subsurface layers can be effectively characterized by GPR attribute-analysis technology. With the attribute calculation and filter, the instantaneous amplitude, instantaneous frequency, and relative wave impedance can be applied in a more efficient way to divide the complete ablation zone, part of the ablation and non-ablation interface. The relative distribution of water content in a seasonally thawing permafrost region can be obtained through a comprehensive GPR attribute analysis.  相似文献   

9.
Fifty active-layer detachment failures triggered after forest fire in the discontinuous permafrost zone (central Mackenzie Valley, 65° N.) are compared to several hundred others caused by summer meteorological triggers in continuous permafrost (Fosheim Peninsula, Ellesmere Island, 80°N). Most failures fall into compact or elongated morphological categories. The compact type occur next to stream channels and have little internal disturbance of the displaced block, whereas the elongated types can develop on any part of the slope and exhibit greater internal deformation. Frequency distributions of length-to-width and length-to-depth ratios are similar at all sites. Positive pore pressures, expected theoretically, were measured in the field at the base of the thawing layer. Effective stress analysis could predict the instability of slopes in both areas, providing cohesion across the thaw plane was set to zero and/or residual strength parameters were employed. The location of the shear planes or zones in relation to the permafrost table and the degree of post-failure secondary movements (including headwall recession and thermokarst development within the failure track) differed between the localities, reflecting dissimilarity in the environmental triggers and in the degree of ground thermal disturbance.  相似文献   

10.
Combined observations of hourly soil temperature and electric potential, the latter converted to a relative index of soil-water solute concentration, yield information on the physical chemistry of near-surface frost effects. Solute concentration near the descending 0° C isotherm in the refreezing active layer above permafrost is divided into three distinct zones: (1) an ion-enriched zone in the unfrozen active layer that precedes the penetrating freezing front; (2) an ion-purified desorbed zone at the freezing front that is the source region of the downward-expelled ions and water; and (3) a hydrologically isolated subfreezing zone of enhanced solute concentration located above the freezing isotherm. High-frequency fluctuations superimposed on these general patterns are traceable to vapor migration driven by surface thermal fluctuations. These effects diminish at temperatures below about -0.4° C, as permeability decreases with soil-ice formation. The combined temperature-solute concentration time series is used to develop sorption curves for the frozen organic and mineral soils, and indicates that approximately half of the pore water present in the mineral soil at -0.4° C had not been converted to ice at -6° C. Gradual soil desiccation over winter appears to result from outward vapor diffusion, possibly through soil cracks. [Key words: Alaska, active layer, frozen ground, soil temperature, soil water, permafrost.]  相似文献   

11.
Permafrost thickness under identical climates in cold regions can vary significantly because it is severely affected by climate change, topography, soil physical and thermal properties, and geothermal conditions. This study numerically in- vestigates the response of ground thermal regime and talik development processes to permafrost with different thicknesses under a thermokarst lake on the Qinghai-Tibet Plateau. On the basis of observed data and information from a representative monitored lake in the Beiluhe Basin, we used a heat transfer model with phase change under a cylindrical coordinate system to conduct three simulation cases with permafrost thicknesses of 45 m, 60 m, and 75 m, respectively. The simulated results indicate that increases in permafrost thickness not only strongly retarded the open talik formation time, but also delayed the permafrost lateral thaw process after the formation of open talik. Increasing the permafrost thickness by 33.3% and 66.7% led to open talik formation time increases of 83.66% and 207.43%, respectively, and resulted in increases in the lateral thaw duration of permafrost under the modeled thermokarst lake by 28.86% and 46.54%, respectively, after the formation of the open taliks.  相似文献   

12.
One of the main construction problems in permafrost regions is protecting permafrost thermal stability. Although ventilating ducts and crushed-rock layers were successfully used in railway embankment construction, their effects might not meet large-width expressway requirements. The convection-intensifying composite embankment composed of perforated ventilation ducts and crushed-rock layers was numerically studied to investigate its cooling effects. Adopting a numerical model, the temperature fields for two kinds of composite embankment with and without air doors were analyzed considering air flow and heat transfer characteristics in porous media. The results show that wind velocity in the crushed-rock zone is intensified by the perforated ventilation duct. The underlying permafrost temperature obviously decreases, and the 0 °C isotherm position rises significantly due to composite embankment. The composite embankment with air doors is more effective than that without air doors. Therefore, the new convection-intensifying composite embankment is potentially a highly efficient cooling measure for construction in permafrost regions.  相似文献   

13.
Permafrost is found on 63%of the territory of Mongolia. This paper provides evidence that the main influences on per-mafrost formation are meso and micro factors of climate and geographical location. R...  相似文献   

14.
The active-layer soils overlying the permafrost are the most thermodynamically active zone of rock or soil and play important roles in the earth-atmosphere energy system. The processes of thawing and freezing and their associated complex hydrothermal coupling can significantly affect variation in mean annual temperatures and the formation of ground ice in permafrost regions. Using soil-temperature and-moisture data obtained from the active layer between September 2011 and October 2014 in the permafrost region of the Nanweng'he River in the Da Xing'anling Mountains, the freeze-thaw characteristics of the permafrost were studied. Based on analysis of ground-temperature variation and hydrothermal transport characteristics, the thawing and freezing processes of the active layer were divided into three stages:(1) autumn-winter freezing,(2) winter freeze-up, and(3) spring-summer thawing. Variations in the soil temperature and moisture were analyzed during each stage of the freeze-thaw process, and the effects of the soil moisture and ground vegetation on the freeze-thaw are discussed in this paper. The study's results show that thawing in the active layer was unidirectional, while the ground freezing was bidirectional(upward from the bottom of the active layer and downward from the ground surface).During the annual freeze-thaw cycle, the migration of soil moisture had different characteristics at different stages. In general, during a freezing-thawing cycle, the soil-water molecules migrate downward, i.e., soil moisture transports from the entire active layer to the upper limit of the permafrost. In the meantime, freeze-thaw in the active layer can be significantly affected by the soil-moisture content and vegetation.  相似文献   

15.
中国冻土研究进展   总被引:6,自引:0,他引:6  
Permafrost in China includes high latitude permafrost in northeastern China, alpine permafrost in northwestern China and high plateau permafrost on the Tibetan Plateau. The high altitude permafrost is about 92% of the total permafrost area in China. The south boundary or lower limit of the seasonally frozen ground is defined in accordance with the 0 ℃ isothermal line of mean air temperature in January, which is roughly corresponding to the line extending from the Qinling Mountains to the Huaihe River in the east and to the southeast boundary of the Tibetan Plateau in the west. Seasonal frozen ground occurs in large parts of the territory in northern China, including Northeast, North, Northwest China and the Tibetan Plateau except for permafrost regions, and accounting for about 55% of the land area of China. The southern limit of short-term frozen ground generally swings south and north along the 25° northern latitude line, occurring in the wet and warm subtropic monsoon climatic zone. Its area is less than 20% of the land area of China.  相似文献   

16.
Permafrost in China includes high latitude permafrost in northeastern China, alpine permafrost in northwestern China and high plateau permafrost on the Tibetan Plateau. The high altitude permafrost is about 92% of the total permafrost area in China. The south boundary or lower limit of the seasonally frozen ground is defined in accordance with the 0 oC isothermal line of mean air temperature in January, which is roughly corresponding to the line extending from the Qinling Mountains to the Huaihe River in the east and to the southeast boundary of the Tibetan Plateau in the west. Seasonal frozen ground occurs in large parts of the territory in northern China, including Northeast, North, Northwest China and the Tibetan Plateau except for permafrost regions, and accounting for about 55% of the land area of China. The southern limit of short-term frozen ground generally swings south and north along the 25o northern latitude line, occurring in the wet and warm subtropic monsoon climatic zone. Its area is less than 20% of the land area of China.  相似文献   

17.
Studies on frozen ground of China   总被引:5,自引:0,他引:5  
1ThestatusoffrozengroundinChinaBased on previous studies, Zhou and Guo (1982) summarized the distribution characteristics of permafrost in China and indicated that the permafrost area in China is about 215×104 km2, in which about 163.4×104 km2 is on the Tibetan Plateau. After mapping and zonation of frozen ground in 1983, Xu and Wang suggested that the areas of permafrost, seasonally frozen ground and temporal frozen ground in China were 206.8×104 km2, 513.7×104 km2 and 229.1×104 km2 …  相似文献   

18.
The Characteristics and Formation of A High-Arctic Proglacial Icing   总被引:1,自引:0,他引:1  
Well‐known from permafrost hydrology, icings (naled or Aufeis) are also frequently encountered at the margins of high‐latitude glaciers. The morphology of a proglacial icing at Scott Turnerbreen in the Norwegian Arctic archipelago of Svalbard is described, and the process of formation is considered in detail. Ground thermal‐regime modelling indicates an equilibrium permafrost depth of at least 200 m in the studied catchment, and it appears unlikely that groundwater contributes to icing formation. Meltwater flow through ice‐marginal drainage channels is accompanied by estimated heat fluxes of up to about 190 W m?2, suggesting that stored meltwater may continue to percolate through thawed sub‐channel sediments when surface runoff is absent during winter. A hydraulic conductivity of 6.9 × 10?3 m s?1 is implied, which is consistent with other studies of glacier drainage systems. The long residence time of winter‐draining meltwater, and solute rejection by refreezing water, account for high observed concentrations of solute in interstitial water in the icing. It has often been asserted that the presence of a proglacial icing indicates that a glacier is polythermal. However, as Scott Turnerbeen is entirely non‐temperate, the presence of an icing cannot always be treated as a reliable guide to the thermal regime of a glacier.  相似文献   

19.
试论青藏高原多年冻土类型的划分   总被引:5,自引:1,他引:5  
本文采用综合分析与主导因素相结合的原则,以干燥度作为主要指标并参考年降水量,年平均相对湿度及气温较差等,结合地形因素将青藏庙的多年冻土划分为:湿润,亚湿润,半干旱,干旱和极干旱5种类型,并对各类型代表性和冻土地区进行分别论述。  相似文献   

20.
We examine the types of icings (aufeis) in the river basins of Primorski Krai. An assessment is made of the conditions for their formation in autumn and winter and for their decay in the spring-summer time. Depending on the type of icings, we identified the character of their impact on the main components of landscape: relief, hydrological regime of streams, soil, vegetation, etc. The emphasis in this study is on the icing formations in the zone of seasonally frozen earth materials and, to a lesser extent, in areas of permafrost islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号