首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The dynamical origin of subduction zone topography   总被引:1,自引:0,他引:1  
Summary. Subduction zones are expressed topographically by long linear oceanic trenches flanked by a low outer rise on the seaward side and an island arc on the landward side. This topographic structure is reflected in free air gravity anomalies, suggesting that much of the topography originates from dynamical forces applied at the base of the crust. We have successfully reproduced the general topographic features of subduction zones by supposing that the stresses generated by the bending of the viscous lower lithosphere as it subducts are transmitted through the thin elastic upper portion of the lithosphere. The trench is due to a zone of extensional flow (associated with low pressure) in the upper part of the viscous lithosphere.
The stresses in the subducting slab are computed using a finite element technique, assuming a Maxwell viscoelastic constitutive relation. Various dips (10 to 90°) were investigated, as well as depth dependent and non-Newtonian (power law, n = 3) viscosities. Observed subduction zone dimensions are well reproduced by these models. The effective viscosity required at mid-depth in the lithosphere is about 6 × 1022 P. This low value is probably due to the stress dependence of the effective viscosity. However, these models also show that the topography of the subduction zone depends primarily upon the geometry of the subducting slab (dip, radius of curvature of the bend) rather than upon its rheology. Shear stresses beneath the trench reach maxima of approximately 50 MPa. An interesting feature of some solutions is a dynamically supported bench or platform between the trench and island arc.  相似文献   

3.
4.
Slab low-velocity layer in the eastern Aleutian subduction zone   总被引:1,自引:0,他引:1  
Local earthquakes in the vicinity of the Alaskan Peninsula's Shumagin Islands often produce arrivals between the main P and S arrivals not predicted by standard traveltime tables. Based on traveltime and polarization, these anomalous arrivals appear to be from P -to- S conversions at the surface of the subducted Pacific Plate beneath the recording stations. The P -to- S conversion occurs at the top of a low-velocity layer which extends to at least 150 km depth and is 8 ˜ 2 per cent slower than the overlying mantle. The slab is ˜ 7 per cent faster than the mantle. The low-velocity layer contains the foci of the earthquakes in the upper plane of the double seismic zone and confines PS ray paths to lie within it. These observations indicate that layered structures persist to positions well past the surface location of the volcanic front. Reactions forming high-pressure minerals do not yield slab-like velocities until beyond the point that subduction zone magma genesis occurs. If the subducted oceanic crust forms the layer, it is subducted essentially intact.  相似文献   

5.
6.
7.
8.
9.
10.
In this paper we present revised locations and original focal mechanisms computed for intermediate and deep earthquakes that occurred within the Southern Tyrrhenian subduction zone between 1988 and 1994, in order to improve our knowledge of the state of stress for this compressional margin. In particular, we define the stress distribution within a large portion of the descending slab, between 40 and about 450 km depth. The seismicity distribution reveals a continuous 40–50 km thick slab that abruptly increases its dip from subhorizontal in the Ionian Sea to a constant 70° dip in the Tyrrhenian. We computed focal mechanisms for events with magnitudes ranging from 2.7 and 5.7, obtaining the distribution of P - and T -axes for many events for which centroid moment tensor (CMT) solutions are not available, thus enabling the sampling of a larger depth range compared to previous studies. We define three portions of the slab characterized by different distributions of P - and T -axes. A general down-dip compression is found between 165 and 370 km depth, whereas in the upper part of the slab (40–165 km depth) the fault-plane solutions are strongly heterogeneous. Below 370 km the P -axes of the few deep events located further to the north have a shallower dip and are not aligned with the 70° dipping slab, possibly suggesting that they belong to a separated piece of subducted lithosphere. There is a good correspondence between the depth range in which the P -axes plunge closer to the slab dip (∼ 70°) and the interval characterized by the highest seismic energy release (190–370 km).  相似文献   

11.
12.
We present a series of 2-D numerical models of viscous flow in the mantle wedge induced by a subducting lithospheric plate. We use a kinematically defined slab geometry approximating the subduction of the Philippine Sea plate beneath Eurasia. Through finite element modelling we explore the effects of different rheological and thermal constraints (e.g. a low-viscosity region in the wedge corner, power law versus Newtonian rheology, the inclusion of thermal buoyancy forces and a temperature-dependent viscosity law) on the velocity and finite strain field in the mantle wedge. From the numerical flow models we construct models of anisotropy in the wedge by calculating the evolution of the finite strain ellipse and combining its geometry with appropriate elastic constants for effective transversely isotropic mantle material. We then predict shear wave splitting for stations located above the model domain using expressions derived from anisotropic perturbation theory, and compare the predictions to ∼500 previously published shear wave splitting measurements from seventeen stations of the broad-band F-net array located in southwestern Japan. Although the use of different model parameters can have a substantial effect on the character of the finite strain field, the effect on the average predicted splitting parameters is small. However, the variations with backazimuth and ray parameter of individual splitting intensity measurements at a given station for different models are often different, and rigorous analysis of details in the splitting patterns allows us to discriminate among different rheological models for flow in the mantle wedge. The splitting observed in southwestern Japan agrees well with the predictions of trench-perpendicular flow in the mantle wedge along with B-type olivine fabric dominating in a region from the wedge corner to about 125 km from the trench.  相似文献   

13.
14.
15.
16.
A Cascadia subduction-zone earthquake has the potential to generate tsunami waves which would impact more than 1000 km of coastline on the west coast of the United States and Canada. Although the predictable extent of tsunami inundation is similar for low-lying land throughout the region, human use of tsunami-prone land varies, creating variations in community exposure and potential impacts. To better understand such variations, land-cover information derived from midresolution remotely-sensed imagery (e.g., 30-m-resolution Landsat Thematic Mapper imagery) was coupled with tsunami-hazard information to describe tsunami-prone land along the Oregon coast. Land-cover data suggest that 95% of the tsunami-prone land in Oregon is undeveloped and is primarily wetlands and unconsolidated shores. Based on Spearman rank correlation coefficients (rs), correlative relationships are strong and statistically significant (p < 0.05) between city-level estimates of the amount of land-cover pixels classified as developed (impervious cover greater than 20%) and the amount of various societal assets, including residential and employee populations, homes, businesses, and tax-parcel values. Community exposure to tsunami hazards, described here by the amount and relative percentage of developed land in tsunami-prone areas, varies considerably among the 26 communities of the study area, and these variations relate to city size. Correlative relationships are strong and significant (p < 0.05) for community exposure rankings based on land-cover data and those based on aggregated socioeconomic data. In the absence of socioeconomic data or community-based knowledge, the integration of hazards information and land-cover information derived from midresolution remotely-sensed imagery to estimate community exposure may be a useful first step in understanding variations in community vulnerability to regional hazards.  相似文献   

17.
Shear wave splitting measurements from S arrivals of local earthquakes recorded at the Incorporated Research Institutions for Seismology (IRIS) broadband sensor SNZO are used to determine a basic anisotropic structure for the subduction zone in the Wellington region. With the use of high-frequency filters, fast anisotropic polarization ( φ ) and splitting time ( δt ) measurements typical of crustal anisotropy are evident, but the larger splitting expected from the mantle is often not resolved. The small splitting seen agrees well with the results of previous studies concerning shallow crustal anisotropy. With the use of lower-frequency filters, measurements more consistent with mantle anisotropy are made. Anisotropy of 4.4 ± 0.9 per cent with a fast polarization of 29° ± 38° is calculated for the subducting slab, from 20 to 70  km depth. Using this result in addition to the results of previous studies, a model is proposed. The model requires a frequency-dependent anisotropy of less than 1.4 per cent when measured with a period of ~2  s to be present in the sub-slab mantle.
Separate from this population, a band of events in northern Cook Strait with an 86° ± 10° fast polarization is seen. This is at about 40° from the strike of the Hikurangi margin, and suggests a source of shear strain 40° removed from that found in the majority of the region. The cause of this is probably a deformation in the subducting slab in this region, as it moves towards a greater incline to the south.  相似文献   

18.
The Southern Andes differ significantly from the Central Andes with respect to topography and crustal structures and are, from a geophysical point of view, less well known. In order to provide insight into the along-strike segmentation of the Andean mountain belt, an integrated 3-D density model was developed for the area between latitudes 36°S and 42°S. The model is based on geophysical and geological data acquired in the region over the past years and was constructed using forward density modelling. In general, the gravity field of the South American margin is characterized by a relatively continuous positive anomaly along the coastline and the forearc region, and by negative anomalies along the trench and the volcanic arc. However, in the forearc region of the central part of the study area, located just to the south of the epicentre of the largest ever recorded earthquake (Valdivia, 1960), the trench-parallel positive anomaly is disrupted. The forearc gravity anomaly differences thus allow the study area to be divided into three segments, the northern Arauco-Lonquimay, the middle Valdivia-Liquiñe, and the southern Bahía-Mansa-Osorno segment, which are also evident in geology. In the proposed model, the observed negative gravity anomaly in the middle segment is reproduced by an approximately 5 km greater depth to the top of the slab beneath the forearc region. The depth to the slab is, however, dependent upon the density of the upper plate structures. Therefore, both the upper and lower plates and their interaction have a significant impact on the subduction-zone gravity field.  相似文献   

19.
20.
Abstract

Snowfall in the Southern Appalachian Mountain region of the eastern US is characterized by much spatiotemporal variability. Annual snowfall totals vary by up to 75 cm, and variations in snowfall intensity can lead to large differences in the local snowfall distribution. Research has shown that the synoptic pattern associated with the snowfall strongly influences the regional-scale distribution of snow cover. However, topographic variability results in locally complex snow cover patterns that are not well understood or documented. In this study, we characterize the snow covered area (SCA) and fractional snow cover associated with different synoptic patterns in 14 individual sub-regions. We analyze 63 snow events using Moderate-resolution Imaging Spectroradiometer standard snow cover products to ascertain both qualitative and quantitative differences in snow cover across sub-regions. Among sub-regions, there is significant variation in the snow cover pattern from individual synoptic classes. Furthermore, the percent SCA follows the regional snowfall climatology, and sub-regions with the highest elevations and northerly latitudes exhibit the greatest variability. Results of the sub-regional analysis provide valuable guidance to forecasters by contributing a deeper understanding of local snow cover patterns and their relationship to synoptic-scale circulation features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号