首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The fatigue life of top tensioned risers under vortex-induced vibrations (VIVs) with consideration of the effect of internal flowing fluid on the riser is analyzed in the time domain. The long-term stress histories of the riser under VIVs are calculated and the mean stresses, the number of stress cycles and amplitudes are determined by the rainflow counting method. The Palmgren-Miner rule for cumulative damage theory with a specified S-N curve is used to estimate the fatigue life of the riser. The corresponding numerical programs numerical simulation of vortex-induced vibrations (NSVIV) which can be used to calculate the VIV response and fatigue life of the riser are compiled. Finally the influences of the riser’s parameters such as flexural rigidity, top tension and internal flow velocity on the fatigue life of the riser are analyzed in detail and some conclusions are drawn.  相似文献   

2.
Using ANSYS-CFX, a general purpose fluid dynamics program, the vortex-induced vibration (VIV) of a variable cross-section cylinder is simulated under uniform current with high Reynolds numbers. Large eddy simulation (LES) is conducted for studying the fluid-structure interaction. The vortex shedding in the wake, the motion trajectories of a cylinder, the variation of drag and lift forces on the cylinder are analyzed. The results show that the vortices of variable cross-section cylinder are chaotic and are varying along the cylinder. In places where cross-sections are changing significantly, the vortices are more irregular. The motion trail of the cylinder is almost the same but irregular. The drag and lift coefficients of the cylinder are varying with the changes of diameters.  相似文献   

3.
Three-stranded rope is widely used in fishing gear and mooring system. Results of numerical simulation are presented for flow around a three-stranded rope in uniform flow. The simulation was carried out to study the hydrodynamic characteristics of pressure and velocity fields of steady incompressible laminar and turbulent wakes behind a three-stranded rope. A three-cylinder configuration and single circular cylinder configuration are used to model the three-stranded rope in the two-dimensional simulation. The governing equations, Navier-Stokes equations, are solved by using two-dimensional finite volume method. The turbulence flow is simulated using Standard κ-ε model and Shear-Stress Transport κ-ω(SST) model. The drag of the three-cylinder model and single cylinder model is calculated for different Reynolds numbers by using control volume analysis method. The pressure coefficient is also calculated for the turbulent model and laminar model based on the control surface method. From the comparison of the drag coefficient and the pressure of the single cylinder and three-cylinder models, it is found that the drag coefficients of the three-cylinder model are generally 1.3–1.5 times those of the single circular cylinder for different Reynolds numbers. Comparing the numerical results with water tank test data, the results of the three-cylinder model are closer to the experiment results than the single cylinder model results.  相似文献   

4.
With the increase of petroleum and gas production in deep ocean, marine risers of circular cylinder shape are widely used in the offshore oil and gas platform. In order to research the hydrodynamic performance of marine risers, the dynamic mesh technique and User-Defined Function (UDF) are used to simulate the circular cylinder motion. The motion of a transversely oscillat-ing circular cylinder in combination of uniform flow and oscillating flow is simulated. The uniform flow and oscillating flow both are in x direction. SIMPLE algorithm is used to solve the Navier-Stokes equations. The User-Defined Function is used to control the cylinder transverse vibration and the inlet flow. The lift and drag coefficient changing with time and the map of vorticity isolines at different phase angle are obtained. Force time histories are shown for uniform flow at Reynolds number (Re) of 200 and for the com-bination of uniform and oscillating flows. With the increase of amplitude of oscillating flow in combined flow, the change of lift am-plitude is not sensitive to the the change of cylinder oscillating frequency. Lift amplitude increases with the increase of oscillating flow amplitude in the combined flow, but there is no definite periodicity of the lift coefficient. The drag and inertia force coefficients change when the maximum velocity of the oscillating flow increases in the combined flow. The vortex shedding near the circular cylinder shows different characteristics.  相似文献   

5.
In order to mitigate vortex-induced vibration (VIV) of marine risers, especially to eliminate the phenomenon of frequency ’lock-in’, a new suppression device of crescent-shaped flow spoiler was designed with seven different layout schemes. VIV model tests with six flow levels were conducted in a large wind-wave-current flume. In all cases, vibration responses in both in-line and cross-flow cases were measured. With the installation of suppression devices vibration frequency evolution of a riser was analyzed by Morlet wavelet transform. The principle of VIV suppression was interpreted through vibration characteristics. Fatigue life of the riser was calculated by the Palmgren-Miner rule. Compared with a bare riser, vibration of an outfitted riser with suppression devices disturbed the steady flow, the vibration amplitudes in the two flow directions were reduced, and the riser fatigue life was improved.  相似文献   

6.
Vortex-induced vibration is quite common during the operation of offshore risers or umbilical cables,commonly leading to serious damage to risers and reduced service life.Vortex-induced vibration of the offshore risers could be effectively suppressed by fairing devices.In this paper,a newly developed vortex-induced vibration fairing and large eddy simulation model of the FLUENT software were used for numerical analysis,experimental research and stimulating vortex-induced vibration at 0.1–2 ms^-1.The data of the numerical model with fairing was compared and analyzed to study the vortex shedding frequency at different Reynolds numbers and changes in drag and lift coefficients.The displacement state of 12 in risers with and without fairing was experimentally tested using a five degree-of-freedom balance.The vortex-induced vibration effect of the fairing was tested at different velocities.The result shows the drag reduction effect of the fairing is more obvious when the flow velocity is 0.4–1.2 ms^-1 and the maximum drag reduction reaches 55.6%when the flow velocity is 0.6 ms^-1.Additionally,the drag reduction effect was obvious when the flow velocity was greater than 1.3 ms^-1 and less than 0.3.The result indicates that the developed 12 in fairing,with good potential in engineering applications,has good vortex-induced vibration-suppression effects.  相似文献   

7.
With the exploitation of oil and gas in deep water, the traditional vortex induced vibration (VIV) theory is challenged by the unprecedented flexibility of risers. A nonlinear time-dependent VIV model is developed in this paper based on a VIV lift force model and the Morison equation. Both the inline vibration induced by the flow due to vortex shedding and the fluid-structure interaction in the transverse direction are included in the model. One of the characteristics of the model is the response-dependent lift force with nonlinear damping, which is different from other VIV models. The calculations show that the model can well describe the VIV of deepwater risers with the results agreeing with those calculated by other models.  相似文献   

8.
In this paper, flow around two circular cylinders in tandem arrangement with unequal diameters has been investigated using the particle image velocimetry technique (PIV) in a water channel. The upstream to downstream diameter ratio was kept constant at d/D = 2/3, the centre-to-centre distance was varied from 1.2D to 5D and the Reynolds number was varied from 1200 to 4800. The flow characteristics were analyzed through ensemble-averaged patterns of velocity, vorticity, normalized Reynolds stress contours and streamlines. Based on ensemble-averaged and instantaneous flow fields, different flow patterns, including single-wake-shedding at small spacing ratio, bi-stable flow behavior (alternating behavior of reattachment and vortex shedding) at intermediate spacing ratio and co-shedding pattern at large spacing ratio were observed. The effects of Reynolds number and the centre-to-centre spacing ratio on flow patterns and turbulent characteristics were also investigated. It was found that the diameter ratio appears to have a certain effect on the flow patterns at intermediate spacing ratios, where the reattachment of shear layer depends on the lateral width of the wake flow in the lee of the upstream cylinder. Extensive discussion on the distributions of Reynolds stress and turbulent kinetic energy was presented.  相似文献   

9.
【目的】研究均匀流多管束干涉流动下圆柱受迫振动的水动力特性。【方法】基于SSTκ-ω模型,在亚临界雷诺数下(Re=1×105)对多管束共振强迫的涡激振动问题进行二维数值模拟,比较与分析三种典型附属管排布方式对主管路流体动力学特征的影响。【结果与结论】采用模型3下的附属管排布方式可在较大范围的振幅比下(Ay/D=0.1~0.8)有效改善主管路水动力特性:1)有效降低主管路上平均升力系数的幅值;2)抑制在单管路系统中出现的脉动升力系数突变衰减。同时,由于多管束对流动产生干涉效应,主管路上表现的尾迹涡度随着振动幅度的增大而呈现出不同的模式。此外,功率谱密度分析发现,多管束系统相较于单圆柱系统,在频率比为1时,模型2与模型3的共振“锁定”状态得到改善。  相似文献   

10.
Discrete element modeling of debris avalanche impact on retaining walls   总被引:2,自引:0,他引:2  
In China,gravity retaining walls are widely used as protection structures against rockfalls,debris flows and debris avalanches along the roads in mountainous areas.In this paper,the Discrete Element Method(DEM) has been used to investigate the impact of granular avalanches and debris flows on retaining walls.The debris is modeled as two dimensional circular disks that interact through frictional sliding contacts.The basic equations that control the deformation and motion of the particles are introduced.A series of numerical experiments were conducted on an idealized debris slide impacting a retaining wall.The parametric study has been performed to examine the influences of slope geometry,travel distance of the sliding mass,wall position,and surface friction on the impact force exerted on the wall.Results show that:1) the force achieves its maximum value when slope angle is equal to 60°,as it varies from 30° to 75°;2) an approximate linear relationship between the impact force and the storage area length is determined.  相似文献   

11.
Marine risers play a key role in the deep and ultra-deep water oil and gas production. The vortex-induced vibration (VIV) of marine risers constitutes an important problem in deep water oil exploration and production. VIV will result in high rates of structural failure of marine riser due to fatigue damage accumulation and diminishes the riser fatigue life. In-service monitoring or full scale testing is essential to improve our understanding of VIV response and enhance our ability to predict fatigue damage. One marine riser fatigue acoustic telemetry scheme is proposed and an engineering prototype machine has been developed to monitor deep and ultra-deep water risers’ fatigue and failure that can diminish the riser fatigue life and lead to economic losses and eco-catastrophe. Many breakthroughs and innovation have been achieved in the process of developing an engineering prototype machine. Sea trials were done on the 6th generation deep-water drilling platform HYSY-981 in the South China Sea. The inclination monitoring results show that the marine riser fatigue acoustic telemetry scheme is feasible and reliable and the engineering prototype machine meets the design criterion and can match the requirements of deep and ultra-deep water riser fatigue monitoring. The rich experience and field data gained in the sea trial which provide much technical support for optimization in the engineering prototype machine in the future.  相似文献   

12.
Different advection schemes and two-equation turbulence closure models based on eddy viscosity concept are used to compute the drag coefficient around a circular cylinder at high Reynolds number (106).The numerical results from these simulations are compared with each other and with experimental data in order to evaluate the performance of different combinations of advection scheme and two-equation turbulence model.The separate contributions from form drag and friction drag are also ana-lyzed.The computatio...  相似文献   

13.
The hydrodynamic forces and flow field of artificial reef models in steady flow were numerically investigated using the RNG k-ɛ turbulent model. The numerical simulation results are consistent with results observed by experimental means. A comparative study indicates that the corresponding errors of forces between calculated values and values observed in the experiment vary in the range of 2.3%–11.2% and that the corresponding errors of velocities vary in the range of 1.3%–15.8%. The flow field numerical results show that upstream and vortices exist when the current passes over and through the surface of the reef model. This study suggests that the numerical simulation method can be applied to predict the forces and flow field associated with artificial reefs.  相似文献   

14.
Environmental load is the primary factor in the design of offshore engineering structures and ocean current is the principal environmental load that causes underwater structural failure. In computational analysis, the calculation of current load is mainly based on the current profile. The current profile model, which is based on a structural failure criterion, is conducive to decreasing the uncertainty of the current load. In this study, we used prototype monitoring data and the empirical orthogonal function(EOF) method to investigate the current profile in the South China Sea and its correlation with the design of underwater structural strength and the dynamic design of fatigue. The underwater structural strength design takes into account the size of the structure and the service water depth. We propose profiles for the overall and local designs using the inverse first-order reliability method(IFORM). We extracted the characteristic profile current(CPC) of the monitored sea area to solve dynamic design problems such as vortex-induced vibration(VIV). We used random sampling to verify the feasibility of using the EOF method to calculate the CPC from the current data and identified the main problems associated with using the CPC, which deserve close attention in VIV design. Our research conclusions provide direct references for determining current load in this sea area. This analysis method can also be used in the analysis of other sea areas or field variables.  相似文献   

15.
Surface waves comprise an important aspect of the interaction between the atmosphere and the ocean, so a dynamically consistent framework for modelling atmosphere-ocean interaction must take account of surface waves, either implicitly or explicitly. In order to calculate the effect of wind forcing on waves and currents, and vice versa, it is necessary to employ a consistent formula- tion of the energy and momentum balance within the airflow, wave field, and water column. It is very advantageous to apply sur- face-following coordinate systems, whereby the steep gradients in mean flow properties near the air-water interface in the cross-interface direction may be resolved over distances which are much smaller than the height of the waves themselves. We may account for the waves explicitly by employing a numerical spectral wave model, and applying a suitable theory of wave–mean flow interaction. If the mean flow is small compared with the wave phase speed, perturbation expansions of the hydrodynamic equations in a Lagrangian or generalized Lagrangian mean framework are useful: for stronger flows, such as for wind blowing over waves, the presence of critical levels where the mean flow velocity is equal to the wave phase speed necessitates the application of more general types of surface-following coordinate system. The interaction of the flow of air and water and associated differences in temperature and the concentration of various substances (such as gas species) gives rise to a complex boundary-layer structure at a wide range of vertical scales, from the sub-millimetre scales of gaseous diffusion, to several tens of metres for the turbulent Ekman layer. The bal- ance of momentum, heat, and mass is also affected significantly by breaking waves, which act to increase the effective area of the surface for mass transfer, and increase turbulent diffusive fluxes via the conversion of wave energy to turbulent kinetic energy.  相似文献   

16.
As a simplified model of artificial reefs, a series of plate models punched with square or circular openings are designed to investigate the effects of openings on the hydrodynamic characteristics of artificial reefs. The models are grouped by various opening numbers and opening-area ratios. They are physically tested in a water flume or used in the numerical simulation to obtain the drag force in the uniform flow with different speeds. The simulation results are found in good agreement with the experimental measurements. By the non-dimensional analysis, the drag coefficient specified to each model is achieved and the effects of openings are examined. It is found that the key factor affecting the drag coefficient is the open-area ratio. Generally, the drag coefficient is a linear function of the open area ratio with a minus slope. The empirical formulae for the square and circular openings respectively are deduced by means of the multiple regression analysis based on the measured and numerical data. They will be good references for the design of new artificial reefs. As a result of numerical simulation, the vorticity contours and pressure distribution are also presented in this work to better understand the hydrodynamic characteristics of different models.  相似文献   

17.
With the development of deepwater oil and gas exploration, Steel Catenary Risers(SCRs) become preferred risers for resource production, import and export. Vortex induced vibration(VIV) is the key problem encountered in the design of SCRs. In this study, a new model, the rigid swing model, is proposed based on the consideration of large curvature of SCRs. The sag bend of SCRs is assumed as a rigid swing system around the axis from the hanging point to the touch down point(TDP) in the model. The torque, produced by the lift force and the swing vector, provides the driving torque for the swing system, and the weight of SCRs provides the restoring torque. The simulated response of rigid swing is coupled with bending vibration, and then the coupling VIV model of SCRs is studied in consideration of bending vibration and rigid motion. The calculated results indicate that the rigid swing has a magnitude equal to that of bending vibration, and the rigid motion affects the dynamic response of SCRs and can not be neglected in the VIV analysis.  相似文献   

18.
A numerical study of flow around two tandem cylinders with unequal diameters was carried out. The upstream larger cylinder was fixed and the downstream smaller cylinder was allowed to oscillate in the transverse direction only. Comparisons of the experimental and numerical results were made to investigate the effects of the gap ratio on the maximum vibration amplitude and vortex shedding frequency. The results showed that the vibration response of the smaller cylinder was significantly affected by the presence of the upstream larger cylinder, and resulted in greatly reduced vibration amplitudes. With an increasing gap ratio, the vibration amplitude increased. However, the magnitude was lower than that corresponding to a single cylinder (with the same diameter as that of the downstream smaller cylinder) under the same flow conditions.  相似文献   

19.
Finite water depth effect for wave-body problems are studied by continuous Rankine source method and non- desingularized technique. Free surface and seabed surface profiles are represented by continuous panels rather than a discretization by isolated points. These panels are positioned exactly on the fluid boundary surfaces and therefore no desingularization technique is required. Space increment method is applied for both free surface source and seabed source arrangements to reduce computational cost and improve numerical efficiency. Fourth order Runge-Kutta iteration scheme is adopted on the free surface updating at every time step. The finite water depth effect is studied quantitatively for a series of cylinders with different B/T ratios. The accuracy and efficiency of the proposed model are validated by comparison with published numerical results and experimental data. Numerical results show that hydrodynamic coefficients vary for cylinder bodies with different ratios of B/T. For certain set of B/T ratios the effect of finite water depth increases quickly with the increase of motion frequency and becomes stable when frequency is relatively large. It also shows that water depths have larger hydrodynamic effects on cylinder with larger breadth to draft ratios. Both the heave added mass and damping coefficients increase across the frequency range with the water depths decrease for forced heave motion. The water depths have smaller effects on sway motion response than on heave motion response.  相似文献   

20.
Oceanic turbulence plays an important role in coastal flow. However, as the effect of an uneven lower boundary on the adjacent turbulence is still not well understood, we explore the mechanics of nearshore turbulence with a turbulence-resolving numerical model known as a large-eddy-simulation model for an idealized scenario in a coastal region for which the lower boundary is a solid sinusoidal wave. The numerical simulation demonstrates how the mechanical energy of the current is transferred into local turbulence mixing, and shows the changes in turbulent intensity over the continuous phase change of the lower topography. The strongest turbulent kinetic energy is concentrated above the trough of the wavy surface. The turbulence mixing is mainly generated by the shear forces; the magnitude of shear production has a local maximum over the crest of the seabed topography, and there is an asymmetry in the shear production between the leeward and windward slopes. The numerical results are consistent with results from laboratory experiments. Our analysis provides an important insight into the mechanism of turbulent kinetic energy production and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号