首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
The Chilean lake district includes diverse lentic ecosystems along ca. 700 km of the country (36°–43°S), including the “Nahuelbutan lakes”, “Araucanian lakes” and “Chiloe lakes”. This area is recognized as an important “hot spot” of benthic freshwater biodiversity in Southern South America. In Chilean temperate lakes, increased nutrient loads of P and N caused eutrophication, particularly in the Nahuelbutan Lakes. The freshwater Hyriidae mussel Diplodon chilensis (Gray, 1828) which is one of the most abundant species in Chilean temperate lakes, is known to be very susceptible to eutrophication. This species presents a clear reduction in its geographic ranges and is considered to be a threatened species in many Chilean lakes. In this study, we used a correlative approach to determine how eutrophication-driven changes in the food supply and in geographical parameters of different Chilean lakes affected the shell growth rates of D. chilensis. The results obtained from sclerochronological analyses of the mussel shells suggest an association with a group of environmental variables, including geographical types (negative), such as latitude and altitude, and limnological types (positive), especially phosphorous and turbidity. However, the D. chilensis populations under extreme conditions of turbidity in eutrophic and hypertrophic lakes are extinct or nearly so. The high positive correlation of the mean D. chilensis growth rates with orthophosphate (R=0.76; P<0.05), in relation to dissolved inorganic nitrogen, suggests that P is the major limiting factor of the primary productivity in Chilean temperate lakes. We discuss some implications of our results in terms of the conservation of biodiversity in temperate lake ecosystems at different taxonomic levels.  相似文献   

2.
3.
Evaporation from small reservoirs, wetlands, and lakes continues to be a theoretical and practical problem in surface hydrology and micrometeorology because atmospheric flows above such systems can rarely be approximated as stationary and planar-homogeneous with no mean subsidence (hereafter referred to as idealized flow state). Here, the turbulence statistics of temperature (T) and water vapor (q) most pertinent to lake evaporation measurements over three water bodies differing in climate, thermal inertia and degree of advective conditions are explored. The three systems included Lac Léman in Switzerland (high thermal inertia, near homogeneous conditions with no appreciable advection due to long upwind fetch), Eshkol reservoir in Israel (intermediate thermal inertia, frequent strong advective conditions) and Tilopozo wetland in Chile (low thermal inertia, frequent but moderate advection). The data analysis focused on how similarity constants for the flux-variance approach, CT/Cq, and relative transport efficiencies RwT/Rwq, are perturbed from unity with increased advection or the active role of temperature. When advection is small and thermal inertia is large, CT/Cq < 1 (or RwT/Rwq > 1) primarily due to the active role of temperature, which is consistent with a large number of studies conducted over bare soil and vegetated surfaces. However, when advection is significantly large, then CT/Cq > 1 (orRwT/Rwq < 1). When advection is moderate and thermal inertia is low, then CT/Cq ∼ 1. This latter equality, while consistent with Monin–Obukhov similarity theory (MOST), is due to the fact that advection tends to increase CT/Cq above unity while the active role of temperature tends to decrease CT/Cq below unity. A simplified scaling analysis derived from the scalar variance budget equation, explained qualitatively how advection could perturb MOST scaling (assumed to represent the idealized flow state).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号