首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Continental Shelf Research》2005,25(9):1081-1095
The mesoscale distribution and seasonal variation of the size structure of phytoplankton biomass, as measured by chlorophyll a (chl a), was studied in the Ebro shelf area (NW Mediterranean) during three different seasons: autumn, winter and summer. In autumn and summer, when the water column was, respectively, slightly or strongly stratified and nutrient concentrations were low at surface, average total chl a values were 0.31 and 0.29 mg m−3, respectively. In winter, the intrusion of nutrients into the photic zone by intense vertical mixing and strong riverine inputs, produced an increase of the total autotrophic biomass (0.76 mg m−3). In the three seasons, the main contributor to total chl a was the picoplanktonic (<2 μm) size fraction (42% in winter and around 60% in autumn and summer). The nanophytoplankton (2–20 μm) contribution to total chl a showed the lowest variability amongst seasons (between 29% and 39%). The microplanktonic (>20 μm) chl a size fraction was higher in winter (27%) than in the other seasons (less than 13%). The maximum total chl a concentrations were found at surface in winter, at depths of 40 m in autumn and between 50 and 80 m in summer. The relative contribution of the <2 μm size fraction at these levels of the water column tended to be higher than at other depths in autumn and winter and lower in summer. In autumn and winter, nutrient inputs from Ebro river discharge and mixing processes resulted in an increase on the >2 μm contribution to total chl a in the coastal zone near the Ebro Delta area. In summer, the contribution of the <2 and >2 μm chl a size fractions was homogeneously distributed through the sampling area. In autumn and summer, when deep chl a maxima were observed, the total amount of the autotrophic biomass in the superficial waters (down to 10 m) of most offshore stations was less than 10% of the whole integrated chl a (down to 100 m or to the bottom). In winter, this percentage increased until 20% or 40%. The >2 μm chl a increased linearly with total chl a values. However, the <2 μm chl a showed a similar linear relationship only at total chl a values lower than 1 mg m−3 (in autumn and summer) or 2 mg m−3 (winter). At higher values of total chl a, the contribution of the <2 μm size fraction remained below an upper limit of roughly 0.5 mg m−3. Our results indicate that the picoplankton fraction of phytoplankton may show higher seasonal and mesoscale variability than is usually acknowledged.  相似文献   

2.
Surface partial pressure of CO2 (pCO2), dissolved inorganic carbon (DIC), temperature, salinity and chlorophyll a (Chl a) at grid stations were measured in the southern Yellow Sea (SYS; 32–37°N to 120–125°E) during four cruises conducted in March 2005 (winter), April 2006 (spring), May 2005 (late spring), and July 2001 (summer). Factors influencing pCO2 spatial and seasonal variations are explored.Surface seawater pCO2 during winter was oversaturated with respect to the atmosphere in the entire study area (380–606 μatm), primarily due to the complete mixing of the water column in winter which brought CO2-enriched bottom water to the surface. However, during spring, surface pCO2 in the central SYS was undersaturated relative to the atmosphere with a low range between 274 and 408 μatm. The net CO2 sink in the central SYS was mainly due to the consumption of CO2 by the strong phytoplankton activity and to the weak water stratification, whereas surface pCO2 in the nearshore area was oversaturated for the atmosphere owing to vertical mixing and terrestrial inputs. During summer, surface pCO2 varied between 125 and 599 μatm over the entire sampling area. In the Changjiang (Yangtze River) Diluted Water (CDW) area, surface pCO2 was undersaturated because of the nutrient inputs via the Changjiang, triggering strong phytoplankton activity, whereas surface pCO2 was oversaturated in other areas. We conclude that the nearshore area behaves as a source of atmospheric CO2 during the entire investigated periods owing to vertical mixing and terrestrial inputs as well as upwelling, whereas the central region generally shifts from a source of CO2 in March to a sink in the remaining time of the investigation.  相似文献   

3.
The horizontal and vertical distribution of jellyfish was assessed in the Chiloé Inland sea, in the northern area of the Chilean Patagonia. A total of 41 species of cnidarians (8 siphonophores, 31 hydromedusae, 2 scyphomedusae) were collected. Eleven jellyfish species were recorded for the first time in the area. Species richness was higher in spring than in winter (37 vs. 25 species, respectively). Species such as Muggiaea atlantica, Solmundella bitentaculata, and Clytia simplex were extremely abundant in spring. The total abundance (408,157 ind 1000 m?3) was 18 times higher in spring than in winter (22,406 ind 1000 m?3).The horizontal distribution of the most abundant species (four in winter, five in spring) showed decreasing abundances in the north–south direction in winter and spring. Peak abundances occurred in the northern microbasins (Reloncaví Fjord, Reloncaví and Ancud gulfs), where the water column stability, phytoplankton and zooplankton abundance were higher, compared with the southern microbasins (Corcovado Gulf, Boca del Guafo). During the spring higher jellyfish abundance season, the vertical distribution of the dominant species (except M. atlantica) showed peak values at mid-depth (30–50 m) and in the deepest sampled layer (50–200 m). This vertical distribution pattern reduced seaward transport in the shallowest layer through estuarine circulation and also limited mortality by predation in the more illuminated shallow layers. Thus, jellyfish were able to remain in the interior waters during the season of maximum biological production.  相似文献   

4.
Our understanding of the continental climate development in East Asia is mainly based on loess–paleosol sequences and summer monsoon precipitation reconstructions based on oxygen isotopes (δ18O) of stalagmites from several Chinese caves. Based on these records, it is thought that East Asian Summer Monsoon (EASM) precipitation generally follows Northern Hemisphere (NH) summer insolation. However, not much is known about the magnitude and timing of deglacial warming on the East Asian continent. In this study we reconstruct continental air temperatures for central China covering the last 34,000 yr, based on the distribution of fossil branched tetraether membrane lipids of soil bacteria in a loess–paleosol sequence from the Mangshan loess plateau. The results indicate that air temperature varied in phase with NH summer insolation, and that the onset of deglacial warming at ~ 19 kyr BP is parallel in timing with other continental records from e.g. Antarctica, southern Africa and South-America. The air temperature increased from ~ 15 °C at the onset of the warming to a maximum of ~ 27 °C in the early Holocene (~ 12 kyr BP), in agreement with the temperature increase inferred from e.g. pollen and phytolith data, and permafrost limits in central China.Comparison of the tetraether membrane lipid-derived temperature record with loess–paleosol proxy records and stalagmite δ18O records shows that the strengthening of EASM precipitation lagged that of deglacial warming by ca. 3 kyr. Moreover, intense soil formation in the loess deposits, caused by substantial increases in summer monsoon precipitation, only started around 12 kyr BP (ca. 7 kyr lag). Our results thus show that the intensification of EASM precipitation unambiguously lagged deglacial warming and NH summer insolation, and may contribute to a better understanding of the mechanisms controlling ice age terminations.  相似文献   

5.
《Continental Shelf Research》1999,19(9):1113-1141
Relationships among primary production, chlorophyll, nutrients, irradiance and mixing processes were examined along the salinity gradient in the Mississippi River outflow region. A series of six cruises were conducted during 1988–1992 at various times of year and stages of river discharge. Maximum values of biomass and primary production were typically observed at intermediate salinities and coincided with non-conservative decreases in nutrients along the salinity gradient. Highest values of productivity (>10 gC m−2 d−1) and biomass (>30 mg chlorophyll a m−3) were observed in April 1988, July–August 1990 and April–May 1992; values were lower in March and September 1991. Rates of primary production were apparently constrained by low irradiance and mixing in the more turbid, low salinity regions of the plume, and by nutrient limitation outside the plume. Highest values of primary production occurred at stations where surface nutrient concentrations exhibited large deviations from conservative mixing relationships, indicating that depletion of nutrients was related to phytoplankton uptake. Mixing and advection were important in determining the location and magnitude of primary production maxima and nutrient depletion. In addition to growth within plume surface waters, enhanced growth and/or retention of biomass may have occurred in longer residence time waters at the plume edge and/or beneath the surface plume. Vertical structure of some plume stations revealed the presence of subsurface biomass maxima in intermediate salinity water that was depleted in nutrients presumably by uptake processes. Exchange between subsurface water and the surface plume apparently contributed to the reduction in nutrients at intermediate salinities in the surface layer. DIN (=nitrate+nitrite+ammonium) : PO4 (=phosphate) ratios in river water varied seasonally, with high values in winter and spring and low values in late summer and fall. Periods of high DIN : PO4 ratios in river nutrients coincided with cruises when surface nutrient concentrations and their ratios indicated a high probability for P limitation. N limitation was more likely to occur at high salinities and during late summer and fall. Evidence for Si limitation was also found, particularly in spring.  相似文献   

6.
Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm–cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011–2040, 2041–2070 and 2071–2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize, respectively. Additionally, compared with spring maize, the average utilization efficiencies of thermal resources of winter wheat and summer maize dramatically increased by 9.2%, 12.1% and 12.0%, respectively. The increases in the average utilization efficiencies of precipitation resources of winter wheat and summer maize were 1.78 kg hm−2 mm−1, 2.07 kg hm−2 mm−1 and 1.92 kg hm−2 mm−1 during 2011–2040, 2041–2070 and 2071–2100, respectively. Our findings highlight that adjusting cropping systems can dominantly contribute to utilization efficiency increases of agricultural climatic resources in Northeast China in the future.  相似文献   

7.
An analysis of the climate change signal for seasonal temperature and precipitation over the Northern Adriatic region is presented here. We collected 43 regional climate simulations covering the target area, including experiments produced in the context of the PRUDENCE and ENSEMBLES projects, and additional experiments produced by the Swedish Meteorological and Hydrological Institute. The ability of the models to simulate the present climate in terms of mean and interannual variability is discussed and the insufficient reproduction of some features, such as the intensity of summer precipitation, are shown. The contribution to the variance associated with the intermodel spread is computed. The changes of mean and interannual variability are analyzed for the period 2071–2100 in the PRUDENCE runs (A2 scenario) and the periods 2021–2050 and 2071–2100 (A1B scenario) for the other runs. Ensemble results show a major warming at the end of the 21st century. Warming will be larger in the A2 scenario (about 5.5 K in summer and 4 K in winter) than in the A1B. Precipitation is projected to increase in winter and decrease in summer by 20% (+0.5 mm/day and −1 mm/day over the Alps, respectively). The climate change signal for scenario A1B in the period 2021–2050 is significant for temperature, but not yet for precipitation. In summer, interannual variability is projected to increase for temperature and for precipitation. Winter interannual variability change is different among scenarios. A reduction of precipitation is found for A2, while for A1B a reduction of temperature interannual variability is observed.  相似文献   

8.
The incidence and severity of extraordinary macroalgae blooms (green tides) are increasing. Here, climate change (ocean warming and acidification) impacts on life history and biochemical responses of a causative green tide species, Ulva rigida, were investigated under combinations of pH (7.95, 7.55, corresponding to lower and higher pCO2), temperature (14, 18 °C) and nitrate availability (6 and 150 μmol L? 1). The higher temperature accelerated the onset and magnitude of gamete settlement. Any two factor combination promoted germination and accelerated growth in young plants. The higher temperature increased reproduction, which increased further in combination with elevated pCO2 or nitrate. Reproductive success was highest (64.4 ± 5.1%) when the upper limits of all three variables were combined. Biochemically, more protein and lipid but less carbohydrate were synthesized under higher temperature and nitrate conditions. These results suggest that climate change may cause more severe green tides, particularly when eutrophication cannot be effectively controlled.  相似文献   

9.
Exploring the dynamics of the utilization of agricultural climatic resources (i.e., environmental factors that affect crop productivity such as light, temperature, and water) can provide a theoretical basis for modifying agricultural practices and distributions of agricultural production in the future. Northeast China is one of the major agricultural production areas in China and also an obvious region of climatic warming. We were motivated to analyze the utilization dynamics of agricultural climatic resource during spring maize cultivation from 1961 to 2010 in Northeast China. To understand these dynamics, we used the daily data from 101 meteorological stations in Northeast China between 1961 and 2010. The demands on agricultural climatic resources in Northeast China imposed by the cultivation of spring maize were combined and agricultural climatic suitability theory was applied. The growth period of spring maize was further detailedly divided into four stages: germination to emergence, emergence to jointing, jointing to tasseling, and tasseling to maturity. The average resource utilization index was established to evaluate the effects. Over the past five decades, Northeast China experienced increases in daily average temperature of 0.246 °C every decade during the growing season (May–September). At the same time, strong fluctuating decreases were observed in average total precipitation of 8.936 mm every decade and an average sunshine hour of 0.122 h every decade. Significant temporal and spatial changes occurred in K from 1961 to 2010. The K showed decreasing trends in Liaoning province and increasing trends in Jilin and especially in Heilongjiang province, which increased by 0.11. Spatial differences were visible in different periods, and the most obvious increase was found in the period 2001–2010. The areas with high values of K shifted northeastward over the past 50 years, indicating more efficient use of agricultural climatic resources in Northeast China.  相似文献   

10.
Mixotrophy, the combination of autotrophic and heterotrophic nutrition in the same organism, is widespread in planktonic algae. Several reports from temperate and high-latitude fjords in Scandinavia suggest the occurrence of a niche in late summer and autumn during post-bloom conditions in which mixotrophic algae can become important grazers in pelagic ecosystems, accessing the nutrients bound in their prey to overcome nutrient limitation. Here, we experimentally determined the trophic modes and bacterivory rates for the nanoplankton community (2–20 μm) in Aysén Fjord located in the Chilean Northern Patagonia during two contrasting seasons: winter and spring. While mixotrophic nanoplankton was virtually absent from the system in spring, in winter at occasions it even constituted the dominant trophic group of the nanoplankton with abundances of >900 cells mL?1. This indicates a second niche for mixotrophs in winter, when mixotrophy allows overcoming light limitation.  相似文献   

11.
《Marine pollution bulletin》2009,58(6-12):313-324
This study investigated the seasonal and spatial dynamics of nutrients and phytoplankton biomass at 12 stations in Hong Kong (HK) waters during a three year period from 2004 to 2006 after upgraded sewage treatment and compared these results to observations before sewage treatment. Pearl River estuary (PRE) discharge significantly increased NO3 and SiO4 concentrations, particularly in western and southern waters when rainfall and river discharge was maximal in summer. Continuous year round discharge of sewage effluent resulted in high NH4 and PO4 in Victoria Harbour (VH) and its vicinity. In winter, spring and fall, the water column at all stations was moderately mixed by winds and tidal currents, and phytoplankton biomass was relatively low compared to summer. In summer, the mean surface phytoplankton chl biomass was generally >9 μg L−1 in most areas as a result of thermohaline stratification, and high nutrients, light, and water temperature. In summer, the potential limiting nutrient is PO4 in the most productive southern waters and it seldom decreased to limiting levels (∼0.1 μM), suggesting that phytoplankton growth may be only episodically limiting. The mean bottom dissolved oxygen (DO) remained >3.5 mg L−1 at most stations, indicating that the eutrophication impact in HK waters was not as severe as expected for such a eutrophic area. After the implementation of chemically enhanced primary sewage treatment in 2001, water quality in VH improved as indicated by a significant decrease in NH4 and PO4 and an increase in bottom DO. In contrast, there were an increase in chl a and NO3, and a significant decrease in bottom DO in southern waters in summer, suggesting that hypoxic events are most likely to occur in this region if phytoplankton biomass and oxygen consumption keep increasing and exceed the buffering capacity of HK waters maintained by monsoon winds, tidal mixing and zooplankton grazing. Therefore, future studies on the long-term changes in nutrient loading from PRE and HK sewage discharge will be crucial for developing future strategies of sewage management in HK waters.  相似文献   

12.
Two research cruises (CIMAR 13 Fiordos) were conducted in the N–S oriented macrobasin of the Moraleda Channel (42–47°S), which includes the E–W oriented Puyuhuapi Channel and Aysen Fjord, during two contrasting productive seasons: austral winter (27 July–7 August 2007) and spring (2–12 November 2007). These campaigns set out to assess the spatio-temporal variability, defined by the local topography along Moraleda Channel, in the biological, physical, and chemical oceanographic characteristics of different microbasins and to quantify the carbon budget of the pelagic trophic webs of Aysen Fjord.Seasonal carbon fluxes and fjord-system functioning vary widely in our study area. In terms of spatial topography, two constriction sills (Meninea and Elefantes) define three microbasins along Moraleda Channel, herein the (1) north (Guafo-Meninea), (2) central (Meninea-Elefantes), and (3) south (Elefantes-San Rafael Lagoon) microbasins. In winter, nutrient concentrations were high (i.e. nitrate range: 21–14 μM) and primary production was low (153–310 mgC m?2 d?1), suggesting that reduced light radiation depressed the plankton dynamics throughout Moraleda Channel. In spring, primary production followed a conspicuous N–S gradient, which was the highest (5167 mgC m?2 d?1) in the north microbasin and the lowest (742 mgC m?2 d?1) in the south microbasin. The seasonal pattern of the semi-enclosed Puyuhuapi Channel and Aysen Fjord, however, revealed no significant differences in primary production (~800 mgC m?2 d?1), and vertical fluxes of particulate organic carbon were nearly twice as high in spring as in winter (266 vs. 168 mgC m?2 d?1).At the time-series station (St. 79), the lithogenic fraction dominated the total sedimented matter (seston). The role of euphausiids in the biological carbon pump of the Patagonian fjords was evident, given the predominance of zooplankton fecal material, mostly euphausiid fecal strings (46% of all fecal material), among the recognizable particles contributing to the particulate organic carbon flux.The topographic constriction sills partially modulated the exchange of oceanic waters (Subantarctic Surface Water) with freshwater river discharges along the Moraleda Channel. This exchange affects salinity and nutrient availability and, thus, the plankton structure. The north microbasin was dominated by a seasonal alternation of the classical (spring) and microbial (winter) food webs. However, in the south microbasin, productivity was low and the system was dominated year-round by large inputs of glacier-derived, silt-rich freshwater carrying predominantly small-sized diatoms (Skeletonema spp) and bacteria. When superimposed upon this scenario, highly variable (seasonal) solar radiation and photoperiods could exacerbate north–south differences along Moraleda Channel.  相似文献   

13.
Using long-term sea surface temperature (SST) and acoustic Doppler current profiler (ADCP) data, we examined variations in the current axis of the Tsushima Warm Current (TWC) off the San’in coast of Japan, near the entrance to the Japan Sea. There were large horizontal temperature gradients along the shelf edge in the southwestern Japan Sea from October to May, suggesting that the second branch of the TWC appears not only in spring and autumn but also in winter. From the ADCP data analysis, we found that currents with speeds of approximately 20 cm s?1 and greater appeared around the shelf edge off San’in coast in all seasons. The SST and ADCP data analyses suggested that the second branch of the TWC exists around the shelf edge off the San’in coast throughout the year. This finding differed from those of previous studies. A relatively strong current (speed greater than 15 cm s?1) appeared on the shore side in all seasons, except at line W in winter. This current might be the first branch of the TWC. The first branch seemed to occur around in 100 m isobaths, but shifted northward and southward because the bottom topography around lines W and M was relatively flat and the shelf was broad. The first branch was very obscure, and it was difficult to define the two branches of the TWC off the San’in coast from the seasonally averaged vectors. However, snapshots of current distribution derived from the ADCP data clearly showed these branches. Hence, both the first and second branches might occur throughout the year off the San’in coast.  相似文献   

14.
The ionospheric slab thickness, the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), is closely related to the shape of the ionospheric electron density profile Ne (h) and the TEC. Therefore, the ionospheric slab thickness is a significant parameter representative of the ionosphere. In this paper, the continuous GPS observations in South Korea are firstly used to study the equivalent slab thickness (EST) and its seasonal variability. The averaged diurnal medians of December–January–February (DJF), March–April–May (MAM), June–July–August (JJA) and September–October–November (SON) in 2003 have been considered to represent the winter, spring, summer and autumn seasons, respectively. The results show that the systematic diurnal changes of TEC, NmF2 and EST significantly appeared in each season and the higher values of TEC and NmF2 are observed during the equinoxes (semiannual anomaly) as well as in the mid-daytime of each season. The EST is significantly smaller in winter than in summer, but with a consistent variation pattern. During 14–16 LT in daytime, the larger EST values are observed in spring and autumn, while the smaller ones are in summer and winter. The peaks of EST diurnal variation are around 10–18 LT which are probably caused by the action of the thermospheric wind and the plasmapheric flow into the F2-region.  相似文献   

15.
The seasonal cycle of chlorophyll concentration in the Bay of Biscay and western English Channel has been examined using satellite data (chlorophyll, sea surface temperature (SST), photosynthetically available radiation (PAR) and wind) along the line of the ferry Pride of Bilbao (Bilbao to Portsmouth). The spring phytoplankton bloom develops regularly in the oceanic region of the Bay of Biscay from mid March to the beginning of May with peak chlorophyll concentrations ranging 2–4 mg m?3. Low wind turbulence is a major factor allowing the development of productivity pulses in the Bay of Biscay during spring. Exceptional blooms of phytoplankton take place in summer (July–August) in the western English Channel with chlorophyll concentrations as high as 40 mg m?3. Some environmental factors (SST, wind, pressure and tide) are examined. Autumn blooms of phytoplankton (1–2 mg m?3) are also detected in the northern Bay of Biscay, shelf-break and Celtic Sea in October. A 11 years pluri-annual synthesis of SeaWiFS satellite measurements is presented.  相似文献   

16.
Long-term changes of the temperature of the middle atmosphere are investigated using a data bank obtained by Russian rocketsondes at Heiss Island (80.6°N, 58°E). The major interest of the data series is that it is one of the longest and uninterrupted records obtained at high latitudes in the northern hemisphere over 25 years, from 1969 to 1994. Previous estimates using this dataset has shown the largest trends. The revised analysis performed here took into account all possible discontinuities in the data series, such as a change in the time-of-measurement, T0, and in the type of sensor. For this purpose, some data were filtered out, and a statistical model based on multiple regression analyses included step functions to take into account such discontinuities. The temperature responses to different sources of variability (solar activity, volcanic aerosols) were retrieved for summer and winter periods. The response to the 11-year solar cycle in the winter period is found to be largely positive in the stratosphere (∼+4 K) and largely negative in the mesosphere (∼−8 K), with a smaller and opposite response in summer. This response depends on the phase of the QBO, as already shown by previous studies. The response to volcanic aerosols is found to be significantly positive in the upper mesosphere, in good agreement with numerical simulations and with observations above France. The long-term trend resulting from this reanalysis indicates a cooling of the middle atmosphere, increasing with altitude from −2 K/decade at 40 km to a maximum of −6 K/decade around 65 km. This result is slightly larger than the trend observed at mid-latitude but quite smaller than previous estimates.  相似文献   

17.
We examined the life history and secondary production of four Ephemeroptera species (Baetis alpinus Pictet, 1843–1845, Baetis rhodani Pictet, 1843–1845, Rhithrogena carpatoalpina Klonowska, Olechowska, Sartoriet & Weichselbaumer, 1987 and Habroleptoides confusa Sartori & Jacob, 1986) in a temperature stable cold spring stream at Prosiek valley (Cho?ské vrchy Mts., West Carpathians, Slovakia). We have found asynchronous bivoltine life cycle for the most abundant species B. alpinus with growth rate positively correlated to photoperiod length. R. carpatoalpina have shown unusual asynchronous univoltine life cycle and B. rhodani have shown uncommonly low abundance in mayfly community. Total secondary production of mayfly community was very low, reaching 1654.8 mg DW m?2 y?1. We suggest that the observed asynchrony in growth could be related to the lack of temperature control.  相似文献   

18.
《Continental Shelf Research》1999,19(14):1755-1770
Ammonium regeneration by size-fractionated plankton was measured for 1 year at a coastal station in the shallow well-mixed waters of the western English Channel. Rates of ammonium regeneration in the <200 μm fraction varied from 0.6 to 27 nmol N l−1 h−1. On the seasonal scale, these rates were relatively low (<7 nmol N l−1 h−1) in autumn and winter, increased steadily from March to attain a maximum (27 nmol N l−1 h−1) at the end of May and thereafter decreased steadily to the seasonal minimum in December. This pattern is distinctly different from that observed in deep well-mixed waters where the peak ammonium regeneration occurs in summer (Le Corre et al., 1996, Journal of Plankton Research, 18, 355–370). Total ammonium regenerated in a year by the microheterotrophs was 15 g N m−2, equivalent to about 60% of the total nitrogen uptake. Microplankton (200–15 μm) accounted for about 50% of the regeneration measured between early spring and late summer. Percent contribution of nanoplankton to total ammonium regeneration varied considerably between the seasons, from very high (83–88%) levels in winter to very low (2–13%) levels in summer. Contribution by picoplankton (<1 μm) was high (20–45%) in summer but was less than 20% in other seasons. Ammonium regeneration in micro- and nanoplankton fractions was mainly associated with ciliates and in the picoplankton fraction with bacteria. Macrozooplankton dynamics appears to regulate ammonium regeneration by ciliates and bacteria. Low macrozooplankton biomass in spring may favour a high growth of ciliates and an associated high in ammonium regeneration. In summer, the increase in macrozooplankton may exert a grazing pressure on ciliates. This, coupled with the fact that most of the flagellates are autotrophs, would, in turn, lower the grazing pressure on the bacteria, thus favouring their development and increasing the importance of their role in ammonium regeneration. This situation, where the macrozooplankton dynamics apparently regulates ammonium regeneration in nano- and picoplankton fractions, appears to be different from that in deep well-mixed waters. Here, the relative contribution of ciliates and bacteria to ammonium regeneration shows little variation with an increase in macrozooplankton biomass.  相似文献   

19.
The seasonal pattern of size-fractionated phytoplankton biomass, primary production and respiration was investigated along the longitudinal axis of the Nervión–Ibaizabal estuary (Bay of Biscay) from April 2003 to September 2004. Environmental factors influencing phytoplankton dynamics were also studied. Chlorophyll a biomass showed a longitudinal pattern of increase from the outer Abra bay to the inner estuary. On a seasonal scale, in the intermediate and inner estuary phytoplankton biomass maxima were registered in summer, the warmest and driest season, whereas in the outer bay chlorophyll a peaks occurred in May 2004, but were delayed to August 2003, likely due to a very rainy spring. Data suggest that river flow exerts a marked influence on the timing of phytoplankton biomass maxima in this estuary, decreased river flows providing a lowering of turbidity and an increase in water residence time needed for chlorophyll a to build up. Nutrient concentrations were high enough not to limit phytoplankton growth throughout the annual cycle, except silicate and occasionally phosphate in the outer bay during summer. Silicate concentration correlated positively with river flow, whereas ammonium and phosphate maximum values were generally measured in the mid-estuary, suggesting the importance of allochthonous anthropogenic sources. In the intermediate and inner estuary phytoplankton biomass was generally dominated by >8 μm size-fraction (ca. 60%), but in August 2003 <8 μm size-fraction increased its contribution in the intermediate estuary. It is argued that the lower nutrient concentrations measured in August 2003 than in August 2004 could have played a role. This is the first study in which phytoplankton primary production rates have been measured along the longitudinal axis of the Nervión–Ibaizabal estuary. Throughout the annual cycle these rates ranged from 0.001 to 3.163 g C m?3 d?1 and were comparable to those measured in nearby small estuaries of the Basque coast and other larger estuaries on the Bay of Biscay. Surface plankton community respiration rate maxima were measured during the spring 2004 chlorophyll a peak in the Abra bay and in summer months at the mid and inner estuary, coinciding with chlorophyll a biomass and primary production maxima. In general, respiration rates showed a positive correlation with temperature. In order to compare results from the Nervión–Ibaizabal estuary with other nearshore coastal and estuarine ecosystems within the Bay of Biscay a review of existing information on phytoplankton biomass and primary production dynamics was performed.  相似文献   

20.
The stable oxygen and hydrogen isotopic features of precipitation in Taiwan, an island located at the western Pacific monsoon area, are presented from nearly 3,500 samples collected during the past decade for 20 stations. Results demonstrate that moisture sources from diverse air masses with different isotopic signals are the main parameter in controlling the precipitation's isotope characteristics. The air mass from polar continental (Pc) region contributes the precipitation with high deuterium excess values (up to 23‰) and relatively enriched isotope compositions (e.g., ? 3.2‰ for δ18O) during the winter with prevailing northeasterly monsoon. By contrast, air masses from equatorial maritime (Em) and tropical maritime (Tm) supply the precipitation with low deuterium excess values (as low as about 7‰) and more depleted isotope values (e.g., ? 8.9‰ and ? 6.0‰ for δ18O of Tm and Em, respectively) during the summer with prevailing southwesterly monsoon. Thus seasonal differences in terms of δ18O, δD, and deuterium excess values are primarily influenced by the interactions among various precipitation sources. While these various air masses travel through Taiwan, secondary evaporation effects further modify the isotope characteristics of the inland precipitation, such as raindrop evaporation (reduces the deuterium excess of winter precipitation) and moisture recycling (increases the deuterium excess of summer precipitation). The semi-quantitative estimations in terms of evaluation for changes in the deuterium excess suggest that the raindrop evaporation fractions for winter precipitation range 7% to 15% and the proportions of recycling moisture in summer precipitation are less than 5%. Additionally, the isotopic altitude gradient in terms of δ18O for summer precipitation is ? 0.22‰/100 m, greater than ? 0.17‰/100 m of winter precipitation. The greater isotopic gradient in summer can be attributed to a higher temperature vs. altitude gradient relative to winter. The observed spatial and seasonal stable isotopic characteristics in Taiwan's precipitation not only contribute valuable information for regional monsoon research crossing the continent–ocean interface of East Asia, but also can serve as very useful database for local water resources management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号