首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Agricultural practices affect the integrity of riparian areas of small streams. In this study we tested the hypothesis that the increase of agricultural activities influences negatively the functional conditions of the low order streams in the Atlantic forest of southern Brazil. Litter bags with leaves of Nectandra megapotamica (Spreng.) Mez were located in eight streams with different amounts of woody vegetation and agriculture land uses in their riparian zones. After 7, 15 and 30 days, the litter bags were removed for identification of associated invertebrates and determination of decomposition rate. Decomposition rates were negatively influenced by agriculture in the riparian zone while primary production was positively influenced. On the other hand, the decomposition mediated by microorganisms did not vary along the degradation gradient. The abundance of collectors increased in streams adjacent to agricultural land while the abundance of shredders was decreased. Our results showed that algae biomass and leaf decomposition were sensitive to the replacement of native vegetation by agricultural use. However, the trophic structure of invertebrates was moderately sensitive to agricultural land use.  相似文献   

2.
Riparian zones are important interface areas between soil and stream systems. Few studies carried out in tropical and subtropical regions evaluate litter decomposition in both stream water and riparian soils. Herein, we assessed the effects of land cover on microbial activity on the decomposition of an exotic litter (Pinus elliottii pine needles only) in water and soils of a subtropical riparian zone. Leaf litter breakdown rates (k in d−1) were estimated for different land covers (Grassland without riparian vegetation, Grassland with riparian vegetation, Forest, and Silviculture). To assess the microbial influence on k, we used fine mesh litter bags with monospecific leaf litter of senescent pine needles. Streams in Silviculture land use showed high k values and orthophosphate, dissolved oxygen and water velocity accelerated the leaf litter breakdown in the stream system. The soil system of Silviculture, Forest, and Grassland with riparian vegetation land covers showed high k values due to the high moisture and litter stock on riparian soil. Only a minor difference between stream and soil systems highlights the significant changes and the negative effects of silviculture on subtropical riparian zones.  相似文献   

3.
Riparian vegetation is an important determinant of the physical, chemical, and biological condition of streams, and odonates are useful indicators of riparian condition. To identify environmental factors that structure Odonata assemblages in tropical forest streams, we collected adult odonate specimens and habitat data from 50 stream sites located in the Brazilian municipality of Paragominas (Pará state). We collected 1769 specimens representing 11 families, 41 genera, and 97 species. Of these species, 56 were Zygoptera, and 41 were Anisoptera. Improved environmental condition was reflected in increased Zygoptera species richness and reduced Anisoptera species richness. Channel shading was strongly and positively related to Zygoptera richness, and negatively to Anisoptera richness. Zygoptera species richness, but not Anisoptera species richness, was related positively to bank angle, quantity of wood in the stream bed, electrical conductivity, and decreased water temperature. Altered riparian vegetation structure was the principal determinant of odonate assemblage structure. Our results indicate that maintaining intact riparian vegetation is fundamental for conserving or re-establishing aquatic odonate assemblage structure.  相似文献   

4.
5.
Little is known about how active stream network expansion during rainstorms influences the ability of riparian buffers to improve water quality. We used aerial photographs to quantify stream network expansion during the wet winter season in five agricultural catchments in western Oregon, USA. Winter stream drainage densities were nearly two orders of magnitude greater than summer stream densities, and agricultural land use was much more abundant along transient portions (e.g. swales, road ditches) of stream networks. Water moving from agricultural fields into expanded stream networks during large hydrologic events has the opportunity to bypass downstream riparian buffers along perennial streams and contribute nonpoint‐source pollutants directly into perennial stream channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

6.
The aim of this paper is to propose a method to detect the functionality of riparian vegetation as buffers/filters/trap against soil runoff and polluting agents caused by agricultural land and erosion areas, near the river. The suspended sediment yield (SSY) is the main vector for pollutants and nutrients generated from the runoff, in the Apennines torrents, indeed finer particles of the soil and their aggregates were proved to be the preferential vehicle of nitrogen, phosphorus, and other polluting agents. The stages of the current study were to spot soil erosion critical areas by the application of Universal Soil Loss Equation (USLE), on a river strip buffer of 200 m, with support of aerial photos and satellite images, land surveys, and application of a G. I. S. The riparian vegetation analysis, on a 20 m wide buffer, was obtained on the basis of ecologic richness, the structural quality, and the depth of the vegetation. The two maps obtained, “erosion risk strip” and “degree of effectiveness of riparian vegetation”, were connected to identify, for every river trunk, the level of functionality of the riparian vegetation in relation to the level of risk erosion on the near hill slopes. The methodology was applied on the Gaiana torrent, near Bologna, North Italian Apennines, where both basin soil loss and SSY have been well studies. The proposed methodology has been designed for the control of water pollution induced by suspended solids, pollutants, and nutrients coming from soil erosion and as a tool to improve the quality of the river environment. The method has the advantage of being easily applicable and can represent a basic tool for stakeholders to take decisions regarding the control and improvement of the river and it can suggest ways to improve or replant the degraded vegetation on the stream banks.  相似文献   

7.
IINTRODUCTIONLanddevelopmentandlandusepatternsinthewatershedcaninduceincreasedsedimentloadsinriversandstreams.AGREATIllstudy(1982)illustratedthatsedimentyieldsfromagriculturallandcouldbeseveralfoldsmorethanothertypeoflandusesanderosionsources.ThesamestudyalsodemonstratedthatfinesedimentsweretheheaviestportionoftotalsoillossesfromeachtypeoflandusesinthetwelvehydrologicareasitinvestigatedintheUMRS.Thesamecouldbetrueforotheruplandareasalso.Howeverfinesediments,formthewashloadofthestream…  相似文献   

8.
Riverine riparian vegetation has changed throughout the southwestern United States, prompting concern about losses of habitat and biodiversity. Woody riparian vegetation grows in a variety of geomorphic settings ranging from bedrock-lined channels to perennial streams crossing deep alluvium and is dependent on interaction between ground-water and surface-water resources. Historically, few reaches in Arizona, southern Utah, or eastern California below 1530 m elevation had closed gallery forests of cottonwood and willow; instead, many alluvial reaches that now support riparian gallery forests once had marshy grasslands and most bedrock canyons were essentially barren. Repeat photography using more than 3000 historical images of rivers indicates that riparian vegetation has increased over much of the region. These increases appear to be related to several factors, notably the reduction in beaver populations by trappers in the 19th century, downcutting of arroyos that drained alluvial aquifers between 1880 and 1910, the frequent recurrence of winter floods during discrete periods of the 20th century, an increased growing season, and stable ground-water levels. Reductions in riparian vegetation result from agricultural clearing, excessive ground-water use, complete flow diversion, and impoundment of reservoirs. Elimination of riparian vegetation occurs either where high ground-water use lowers the water table below the rooting depth of riparian species, where base flow is completely diverted, or both. We illustrate regional changes using case histories of the San Pedro and Santa Cruz Rivers, which are adjacent watersheds in southern Arizona with long histories of water development and different trajectories of change in riparian vegetation.  相似文献   

9.
The Xiaolangdi Dam, completed in 2000, is second in scale in China to the Three Gorges Project. It has generated remarkable economic and social benefits but with profound impacts to the riverine and regional environments. This paper reports field monitoring of riparian groundwater in the Kouma section of the Yellow River to illustrate the interactions between dam‐regulated river flow and riparian groundwater. The results show that the hydrological condition in riparian zones downstream from the dam has changed from a typical wet–dry cycle to a condition of semi‐permanent dryness, resulting in degradation of the typical attributes and functions of the wetland ecosystem. Hydrological processes in the riparian zone have changed from a complex multiple flooding regime to a simple regime of dominant groundwater drainage towards the river, which only reverses temporarily during the water and sediment regulation period of the dam. Data on groundwater level and groundwater quality show that there are two key points, at ca 200 and 400 m from the river bank, which distinguish zones with different sensitivity to changes of river flow and indicate different interactions between river water and groundwater. The shallow groundwater quality also is negatively affected by the intensive agricultural development that has occurred since the dam was completed. Ecological restoration needs to be carried out to construct a protective natural riparian zone within ca 200 m from the river, this being an ecotone, which is key to the protection of both riparian groundwater and the river. The riparian zone from 200 to 400 m also should be treated as a transitional zone. In addition, ecologically sensitive agriculture and ecotourism organized by local communities would be beneficial in the area beyond 400 m. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Understanding spatio-temporal suspended sediment dynamics is more important in large watersheds due to the decisive role of local source apportionment in sediment transport and yield. The Talar River with a large mountainous watershed in northern Iran, which plays a vital role in water supply for agriculture and drinking, recently has faced quality degradation. The current study explores the relative contribution of suspended sediment sources using geochemical tracers and fingerprinting techniqu...  相似文献   

11.
The conversion of forests into agriculture has been identified as a key process for stream homogenization. However, the effects of this conversion can be scale-dependent. In this context, our aim was to identify the influence of different land uses at different spatial scales (catchment, drainage network and local) on instream features in agricultural streams. We defined six classes of land use: native forest, reforestation, herbaceous and shrubs, pasture, sugarcane and other categories. We obtained 22 variables related to instream, riparian area, stream morphology and water physicochemical characteristics in 86 stream reaches. To identify and isolate the effect of different land uses at different spatial scales on instream features, we performed a partial redundancy analysis (p-RDA). Different land uses and scales influenced instream features and defined two stream groups: (i) homogeneous streams with a higher proportion of sand substrate and instream grasses that were associated with the proportion of herbaceous vegetation at the local scale and with pasture at all scales and (ii) heterogeneous streams with a higher physical habitat integrity associated with the proportion of forest and sugarcane at the local and catchment scales. Land use at the catchment scale affected the physicochemical water properties and stream morphology, whereas stream physical habitat (i.e., substrate, instream cover, marginal vegetation and stream physical habitat condition) was mainly influenced by land use at the local scale (i.e., 150 m radius). Pure catchment, drainage network and local land uses explained 9%, 7% and 4%, respectively, of the total variation of instream features. Thus, to be most effective, stream conservation and restoration efforts should not be limited to only one scale.  相似文献   

12.
Monitoring programs are among the first steps to develop robust management strategies, especially in international transboundary waters. Understanding how water quality parameters are impacted by different types of land use promotes a baseline for stakeholders to define the best governance for the management of water resources. Seeking to provide this type of information, we sampled 24 streams – 12 in Brazil and 12 in Paraguay – in February, April, July, September, and November 2019. We determined water quality parameters, grouped into three categories: morphometric, physical and chemical, and nutrients. We explored differences in water quality parameters between countries, and over a one-year sampling. We also tested whether Brazilian and Paraguayan streams are impacted by agriculture, urbanization, and forest cover. Finally, we performed a partial RDA to test the influence of land use on water quality parameters and controlled spatial autocorrelation by including spatial variables (dbMEM) as a condition. Most of the water quality parameters showed significant differences between countries; only turbidity, and pH, presented significant differences between countries and sampling periods, and only water temperature varied significantly along the year. We did not find evidence that different types of land use are causing physical and chemical variance in Brazilian and Paraguayan streams (R² = 0.06, p = 0.68). In conclusion, the results evidenced that the main differences in the water quality parameters occur between countries. Based on the results, transboundary governance can use these data to implement integrated water resources management cooperation.  相似文献   

13.
This research investigates the potential impacts of climate change on stormwater quantity and quality generated by urban residential areas on an event basis in the rainy season. An urban residential stormwater drainage area in southeast Calgary, Alberta, Canada is the focus of future climate projections from general circulation models (GCMs). A regression‐based statistical downscaling tool was employed to conduct spatial downscaling of daily precipitation and daily mean temperature using projection outputs from the coupled GCM. Projected changes in precipitation and temperature were applied to current climate scenarios to generate future climate scenarios. Artificial neural networks (ANNs) developed for modelling stormwater runoff quantity and quality used projected climate scenarios as network inputs. The hydrological response to climate change was investigated through stormwater runoff volume and peak flow, while the water quality responses were investigated through the event mean value (EMV) of five parameters: turbidity, conductivity, water temperature, dissolved oxygen (DO) and pH. First flush (FF) effects were also noted. Under future climate scenarios, the EMVs of turbidity increased in all storms except for three events of short duration. The EMVs of conductivity were found to decline in small and frequent storms (return period < 5 years); but conductivity EMVs were observed to increase in intensive events (return period ≥ 5 years). In general, an increasing EMV was observed for water temperature, whereas a decreasing trend was found for DO EMV. No clear trend was found in the EMV of pH. In addition, projected future climate scenarios do not produce a stronger FF effect on dissolved solids and suspended solids compared to that produced by the current climate scenario. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Studies investigating the effects of human activities on the functional organization of macroinvertebrate communities in tropical streams and rivers are very limited, despite these areas witnessing the greatest loss of natural forests globally. We investigated changes in taxon richness, numerical abundance and biomass of macroinvertebrate functional feeding groups (FFGs) in streams draining different land-use types in the Sosiani-Kipkaren River in western Kenya. Twenty-one sites in river reaches categorized as forested, mixed, urban or agricultural were sampled during the dry and wet seasons. Collected macroinvertebrates were identified to the lowest taxon possible (mainly genus) and classified into five major FFGs; collector-gatherers, collector-filterers, scrapers, predators and shredders. There were significant (p < 0.05) spatial variation in habitat quality, organic matter standing stocks, total suspended solids, electrical conductivity, dissolved oxygen, temperature and nutrient concentrations across land-uses, with forested sites recording lowest values in mean water temperature, electrical conductivity and nutrients while recording highest levels in dissolved oxygen concentrations. Responses in macroinvertebrates to changes in land-use varied with richness, abundance and biomass showing differences within FFGs. Biomass-based metrics responded more strongly to change in land-use while taxon richness was the least predictive, indicating replacement of taxa within FFGs across land-use types. Higher shredder abundance, biomass and richness were recorded in forested streams which were cooler with protected riparian areas and high biomass of coarse particulate organic matter. Collector-gatherers dominated agricultural and urban streams owing to an abundance of particulate organic matter and nutrients, while scrapers responded positively to increased nutrient levels and open canopy in mixed and agricultural streams where primary production and algal biomass was likely increased. Overall, this study provides further evidence of the effects of agricultural and urban land-uses on tropical streams and rivers and contributes to the use of macroinvertebrate FFGs as indicators of ecological health.  相似文献   

15.
In recent decades, riparian vegetation has been removed from important ecosystems around the world, in spite of its high ecological importance for aquatic biota. Nevertheless, the effects of catchment land use on zooplankton have been little studied. The present study investigated if replanting riparian vegetation in a tropical reservoir influences the richness and abundance of cladoceran communities, by addressing the question of whether cladocerans show differences in richness and abundance among four levels of riparian vegetation conditions: 1) native forest (NF); 2) 30 years after forest replanting (R1); 3) 10 years after forest replanting (R2); and 4) no forest (No-F). Zooplankton samples were obtained from 9 stations in the Volta Grande Reservoir, Minas Gerais, Brazil. Cladocerans in zones NF and R1 showed higher levels of richness and abundance than in zones No-F and R2. Ceriodaphnia reticulata, Ceriodaphnia laticaudata, and Diaphanosoma spinulosum showed higher abundances in zones NF and R1. Cladoceran community structure was influenced by the different levels of riparian vegetation. This study showed that the presence and age of riparian forest positively influence the abundance, richness and diversity of cladoceran assemblages. Furthermore, our results indicated that C. reticulata, C. laticaudata and D. spinulosum are more efficient than other cladocerans in exploiting allochthonous resources provided by riparian forest. Functional diversity was higher in zones NF and R1, suggesting that the trait composition of cladoceran assemblages responds positively to recovery of riparian forest. Overall, our research suggests that cladocerans are good indicators of riparian vegetation conditions and that restoration of riparian forest positively affects cladoceran assemblages of tropical reservoirs.  相似文献   

16.
While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modelling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid‐based spatially distributed model, Distributed Hydrology Soil Vegetation Model‐Water Quality (DHSVM‐WQ), is an outgrowth of DHSVM that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high‐spatial and high‐temporal resolution. DHSVM‐WQ simulates surface run‐off quality and in‐stream processes that control the transport of non‐point source pollutants into urban streams. We configure DHSVM‐WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here, we focus on total suspended solids (TSS) and total phosphorus (TP) from non‐point sources (run‐off), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely because of substantially increased streamflow and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and climate change together are predicted to significantly increase annual mean streamflow (up to 55%), water temperature (up to 1.9 °C), TSS load (up to 182%) and TP load (up to 74%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Large wood (LW) affects several ecological and hydrogeomorphic processes in streams. The main source of LW is riparian trees falling inside channels. However, in confined valley floors, falling trees are more likely to be suspended above the channel. Eventually, these suspended trees will decompose and break to finally fall into the channel to better provide functions for streams. We evaluated changes in wood decay, length, diameter, and suspended status (suspended or non-suspended) 17 years post-harvest and nine years after the first sampling occurred in 2006 in 12 headwater streams of coastal British Columbia, Canada. We also evaluated whether changes differed among riparian management treatments (no-harvest buffers of 10 and 30 m in width, thinning, and unharvested reference sites), and identified the factors affecting wood changes and suspended status. Wood pieces advanced in decay, became shorter, and 34% of them (n = 108) changed status from suspended to non-suspended. Non-suspended wood pieces were more decayed and shorter than suspended wood. Suspended wood was longer, thicker, less decayed, and represented 46.5% (n = 147) of the wood sampled in 2006. Our findings revealed limited influences of riparian management on many aspects of wood changes considered in this study. Changes in wood characteristics were more likely for pieces that were smaller in diameter, longer, and suspended closer to the water. The transition from suspended to non-suspended LW can be a long-term process that can increase wood residence time and reduce LW in-stream functions particularly in confined stream valleys. The suspended stage is also an important mechanism underlying time lags in stream ecosystem responses to riparian tree fall. © 2020 John Wiley & Sons, Ltd.  相似文献   

18.
RIPGIS-NET, an Environmental System Research Institute (ESRI's) ArcGIS 9.2/9.3 custom application, was developed to derive parameters and visualize results of spatially explicit riparian groundwater evapotranspiration (ETg), evapotranspiration from saturated zone, in groundwater flow models for ecohydrology, riparian ecosystem management, and stream restoration. Specifically RIPGIS-NET works with riparian evapotranspiration (RIP-ET), a modeling package that works with the MODFLOW groundwater flow model. RIP-ET improves ETg simulations by using a set of eco-physiologically based ETg curves for plant functional subgroups (PFSGs), and separates ground evaporation and plant transpiration processes from the water table. The RIPGIS-NET program was developed in Visual Basic 2005, .NET framework 2.0, and runs in ArcMap 9.2 and 9.3 applications. RIPGIS-NET, a pre- and post-processor for RIP-ET, incorporates spatial variability of riparian vegetation and land surface elevation into ETg estimation in MODFLOW groundwater models. RIPGIS-NET derives RIP-ET input parameters including PFSG evapotranspiration curve parameters, fractional coverage areas of each PFSG in a MODFLOW cell, and average surface elevation per riparian vegetation polygon using a digital elevation model. RIPGIS-NET also provides visualization tools for modelers to create head maps, depth to water table (DTWT) maps, and plot DTWT for a PFSG in a polygon in the Geographic Information System based on MODFLOW simulation results.  相似文献   

19.
The quality of stormwater runoff from seaports can be an important source of pollution to the marine environment. Currently, little knowledge exists with regards to the pollutant generation capacity specific to seaports as they do not necessarily compare well with conventional urban land use. The research project focussed on the assessment of pollutant build-up and wash-off. The study was undertaken using rainfall simulation and small impervious plots for different port land uses with the results obtained compared to typical urban land uses.The study outcomes confirmed that the Port land uses exhibit comparatively lower pollutant concentrations. However, the pollutant characteristics varied across different land uses. Hence, the provision of stereotypical water quality improvement measures could be of limited value. Particle size <150 μm was predominant in suspended solids. Therefore, if suspended solids are targeted as the surrogate parameter for water quality improvement, this particle size range needs to be removed.  相似文献   

20.
Riparian land use is a key driver of stream ecosystem processes but its effects on water quality are still a matter of debate when proposing measures to improve freshwater quality. The aim of this study was to examine the influence of riparian land use on stream habitat and water chemistry, and to assess in what extent stream habitat also affects water quality. To that end, we selected eight reaches in the Ave River basin (northwestern Portugal) and compared longitudinal variations in water chemistry and stream habitat between reaches with different land use (urban, agricultural and natural), and between reaches with natural riparian areas and different habitats. Stream habitat was assessed using the Fluvial Functional Index, the HABSCORE, and the Riparian Forest Quality Index. Longitudinal variations in water chemistry were determined measuring differences in concentrations of ammonium, nitrate, phosphate and oxygen, and conductivity, pH and temperature between the downstream and the upstream ends of each reach. Nitrate concentration tended to decrease along reaches with more natural riparian areas and to increase along reaches with more urban and agricultural land uses. Longitudinal variations in water chemistry also differed between reaches with natural riparian areas, suggesting that water quality also depends on stream habitat. Moreover, longitudinal variation in water chemistry was proven a simple, useful and low-cost approach to assess the influence of land cover and stream habitat on water quality. Overall results demonstrated that both riparian land use and stream habitat influence water quality and that riparian forests are essential to reduce nutrient export to downstream ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号