首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Continental Shelf Research》1999,19(15-16):2041-2061
Three sampling cruises were conducted in the Seine Estuary from 1993 to 1995 in varying hydrological and seasonal conditions. The site included all of the lower part of the river under the influence of tidal dynamics and the dilution plume in the Baie de Seine. Chemical speciation of arsenic showed high seasonal variations, especially in September when AsIII represented around 50% of dissolved arsenic. The inclusion of organoarsenic compounds not accessible to direct analysis by hydride generation required preliminary mineralisation of the samples. The ratio of dissolved to particulate arsenic distribution was controlled mainly by the iron content of particles. Biological activity had an influence on chemical speciation and thus on the partition coefficient (KD 10−3=6±1 in September and 12±0.9 in February). The zone of conservative mixing used for Seine River flow calculations was limited to a salinity range of approximately 10–30. Dissolved arsenic concentrations extrapolated to null salinities were lower during the high-water period because of dilution (17.6±1.1 nM), and maximal during the low-water period in summer (35.7±0.9 nM). Mean arsenic export to the English Channel was estimated at 33.2±6 T yr−1 for dissolved arsenic. Observation of an arsenic output greater than the upstream input, as well as a simultaneous increase in dissolved and particulate arsenic concentrations during the mixing of freshwater with seawater, strongly suggested the existence of an important intra-estuarine source of arsenic, either of industrial origin or related to the transport and diagenesis of marine sediments.  相似文献   

2.
Most rivers in Italy are segmented by dams that need rehabilitation because of (1) safety requirements by increasingly risk-averse societies, (2) changes in the downstream river and riparian system after dams building, (3) poor initial design at the time of completion and (4) modified priorities of watershed management. Safe design of flood spillways is a major concern, and requires to cope with low frequency flood hazard. One must estimate flood figures with high return periods (R  1000–10,000 years) but statistical methods involve large uncertainties because of the short length of the available records. This paper investigates the return period of the design flood of existing spillways RS of large dams in Italy. We used re-normalized flood frequency approach and regionalization using the Generalized Extreme Value distribution. The estimation of the site specific index flood is carried out by simple scaling with basin area at the regional level. The result show that 55% (245) of the 448 examined dams are equipped by spillway with RS > 10,000; and 71% (315) of the dams have RS > 1000. Conversely, 29% (130) of the dams display RS < 1000 years, lower than acceptable hazard. The spillway of 14% (62) of the dams has RS < 100 years, indicating potential exceedance of spillways capacity. Reservoir routing may dampen the outflow hydrograph, but one should carefully account for the need of achieving accurate dam safety assessment of these dams based on site specific investigations, also accounting for global change forcing.  相似文献   

3.
Tilapia rendalli is a predominately macrophagous fish. However, it was able to colonise an oligotrophic dam (Flag Boshielo) with limited macrophytes. Therefore, the diet of T. rendalli in this dam was investigated; its stomach contents were examined over 12 months. A size related dietary shift was evident. Juveniles fed mainly on zooplankton while sub-adult and adult fish grazed on both macrophytes and marginal vegetation. T. rendalli’s ability to strive in an environment with limited food resources led to a subsequent study to determine its aquaculture potential. Its growth performance was compared to that of the commonly cultured Oreochromis mossambicus. Juveniles of both species were fed a commercial tilapia diet for 60 days. Specific growth rate and protein efficiency ratio was comparable to that of O. mossambicus (P > 0.05, ANOVA). Feed conversion ratio was significantly higher (P < 0.05) in T. rendalli (1.43) than in O. mossambicus (1.25) indicating a better efficiency in feed utilisation by O. mossambicus. At a physiological level, protease, lipase and cellulase activities did not differ significantly between the two fish species (P > 0.05). Amylase activities were significantly higher (P < 0.05) in T. rendalli than in O. mossambicus. The highest amylase activities were recorded in the proximal intestines as 26.34 and 22.00 μmol/min/mg protein in T. rendalli and O. mossambicus respectively. This may be an indicator that T. rendalli is better equipped to digest plant diets. T. rendalli may be the aquaculture species of choice for emerging fish farmers who cannot afford the highly priced fishmeal as a protein source in fish diets.  相似文献   

4.
Radiocarbon dating based on geomorphological, archaeological and biological data is widely used in geomorphological studies to reconstruct sequences of climatic variations and coastal evolution during the Holocene. The coastal area of Southern Italy is characterized by aeolian dune belts shaped during the Holocene that crop out along the present shoreline. Archaeological data and previous radiocarbon results suggest three aeolian morphogenetic phases. The first phase corresponds to the end of the rapid post-glacial transgression (7.0–6.0 ka BP); the second to the aeolian sand deposition during the “Greek–Roman” period (2.5–1.9 ka BP); and the most recent phase occurred in the period from the Middle Ages to the present time. The reconstruction of the sequence of the morphogenetic phases was mainly based on radiocarbon analyses carried out on both terrestrial gastropods and marine bivalves. The reliability of the radiocarbon analyses on terrestrial gastropod shells has been questioned by several Authors and a closer understanding of the carbon uptake mechanism in this kind of organisms is needed.A systematic study was carried out by performing Accelerator Mass Spectrometry (AMS) 14C dating on the shells of terrestrial gastropods sampled alive in different geomorphological settings along the Adriatic and Ionian coasts of Southern Italy. The results show significant anomalies in the radiocarbon content and in the carbon stable isotopic ratio. This can be due to the ingestion of 14C-depleted calcium carbonate in the diet of these organisms. We also calculated the carbon fraction from air Xa (between 16% and 48%), plants Xv (between 36% and 73%) and limestone Xc (between 3% and 23%) giving insight to the origin of the age anomalies.  相似文献   

5.
《Marine pollution bulletin》2014,80(1-2):211-219
Lipid and fatty acid (FA) composition and selected oxidative stress parameters of freshwater clams (Dipolodon chilensis), from a sewage-polluted (SMA) and a clean site, were compared. Trophic markers FA were analyzed in clams and sediment. Saturated FA (SAFA), and bacteria and sewage markers were abundant in SMA sediments, while diatom markers were 50% lower. Proportions of SAFA, branched FA, 20:5n  3 (EPA) and 22:6n  3 (DHA) were higher in SMA clams. Chronic exposure of D. chilensis to increasing eutrophication affected its lipid and FA composition. The increase in EPA and DHA proportions could be an adaptive response, which increases stress resistance but could also lead to higher susceptibility to lipid peroxidation TBARS, lipofuscins (20-fold) and GSH concentrations were higher in SMA clams. FA markers indicated terrestrial plant detritus and bacteria are important items in D. chilensis diet. Anthropogenic input in their food could be traced using specific FA as trophic markers.  相似文献   

6.
There has been global concern about the effect of toxic chemicals on aquatic biota due to the upsurge in contamination of aquatic ecosystems by these chemicals, which includes pesticides. Roundup® and other glyphosate-based herbicides are frequently used in the chemical control of weeds and invading alien plant species in South Africa. These bio-active chemicals ultimately get into water courses directly or indirectly through processes such as drifting, leaching, surface runoff and foliar spray of aquatic nuisance plants. However, there is no South African water quality guideline to protect indigenous freshwater non-target organisms from the toxic effects of glyphosate-based herbicides. This study evaluated the possible use of growth measures in Caridina nilotica as biomarkers of Roundup® pollution as part of developing glyphosate water quality guideline for the protection of aquatic life in South Africa. Using static-renewal methods in a 25-day growth toxicity test, 40 days post hatch shrimps were exposed to different sub-lethal Roundup® concentrations of 0.0 (control), 2.2, 2.8, 3.4, 4.3 and 5.4 mg/L. Shrimps were fed daily with TetraMin® flake food and test solutions changed every third day. Shrimp total lengths and wet weights were measured every fifth day. These data were used to determine the shrimp’s growth performance and feed utilization in terms of percent weight gain (PWG), percent length gain (PLG), specific growth rate (SGR), condition factor (CF), feed intake (FI), feed conversion ratio (FCR) and feed conversion efficiency (FCE). Moulting was observed for 14 days and the data used to determine the daily moult rate for each concentration. Results of growth performance and food utilization indices showed that growth was significantly impaired in all exposed groups compared to control (p < 0.05). Moulting frequency was also higher in all exposed groups than in control (p < 0.05). Although all the tested growth measures proved to be possible biomarkers of Roundup® pollution, moulting frequency gives a clearer indication of the sub-lethal effects of Roundup® toxicity.  相似文献   

7.
We report new high-precision laser fluorination three-isotope oxygen data for lunar materials. Terrestrial silicates with a range of δ18O values (− 0.5 to 22.9‰) were analyzed to independently determine the slope of the terrestrial fractionation line (TFL; λ = 0.5259 ± 0.0008; 95% confidence level). This new TFL determination allows direct comparison of lunar oxygen isotope systematics with those of Earth. Values of Δ17O for Apollo 12, 15, and 17 basalts and Luna 24 soil samples average 0.01‰ and are indistinguishable from the TFL. The δ18O values of high- and low-Ti lunar basalts are distinct. Average whole-rock δ18O values for low-Ti lunar basalts from the Apollo 12 (5.72 ± 0.06‰) and Apollo 15 landing sites (5.65 ± 0.12‰) are identical within error and are markedly higher than Apollo 17 high-Ti basalts (5.46 ± 0.11‰). Evolved low-Ti LaPaz mare-basalt meteorite δ18O values (5.67 ± 0.05‰) are in close agreement with more primitive low-Ti Apollo 12 and 15 mare basalts. Modeling of lunar mare-basalt source composition indicates that the high- and low-Ti mare-basalt mantle reservoirs were in oxygen isotope equilibrium and that variations in δ18O do not result from fractional crystallization. Instead, these differences are consistent with mineralogically heterogeneous mantle sources for mare basalts, and with lunar magma ocean differentiation models that result in a thick feldspathic crust, an olivine–pyroxene-rich mantle, and late-stage ilmenite-rich zones that were convectively mixed into deeper portions of the lunar mantle. Higher average δ18O (WR) values of low-Ti basalts compared to terrestrial mid ocean ridge basalts (Δ=0.18‰) suggest a possible oxygen isotopic difference between the terrestrial and lunar mantles. However, calculations of the δ18O of lunar mantle olivine in this study are only 0.05‰ higher than terrestrial mantle olivine. These observations may have important implications for understanding the formation of the Earth–Moon system.  相似文献   

8.
Tektites are terrestrial natural glasses produced during a hypervelocity impact of an extraterrestrial projectile onto the Earth's surface. The similarity between the chemical and isotopic compositions of tektites and terrestrial upper continental crust implies that the tektites formed by fusion of such target rock. Tektites are among the driest rocks on Earth. Although volatilization at high temperature may have caused this extreme dryness, the exact mechanism of the water loss and the behavior of other volatile species during tektite formation are still debated. Volatilization can fractionate isotopes, therefore, comparing the isotope composition of volatile elements in tektites with that of their source rocks may help to understand the physical conditions during tektite formation.For this study, we have measured the Zn isotopic composition of 20 tektites from four different strewn fields. Almost all samples are enriched in heavy isotopes of Zn compared to the upper continental crust. On average, the different groups of tektites are isotopically distinct (listed from the isotopically lightest to the heaviest): Muong-Nong type indochinites (δ66/64Zn = 0.61 ± 0.30‰); North American bediasites (δ66/64Zn = 1.61 ± 0.49‰); Ivory Coast tektites (δ66/64Zn = 1.66 ± 0.18‰); the Australasian tektites (others than the Muong Nong-type indochinites) (δ66/64Zn = 1.84 ± 0.42‰); and Central European moldavites (δ66/64Zn = 2.04 ± 0.19‰). These results are contrasted with a narrow range of δ66/64Zn = 0–0.7‰ for a diverse spectrum of upper continental crust materials.The elemental abundance of Zn is negatively correlated with δ66/64Zn, which may reflect that isotopic fractionation occurred by evaporation during the heating event upon tektite formation. Simple Rayleigh distillation predicts isotopic fractionations much larger than what is actually observed, therefore, such a model cannot account for the observed Zn isotope fractionation in tektites. We have developed a more realistic model of evaporation of Zn from a molten sphere: during its hypervelocity trajectory, the molten surface of the tektite will be entrained by viscous coupling with air that will then induce a velocity field inside the molten sphere. This velocity field induces significant radial chemical mixing within the tektite that accelerates the evaporation process. Our model, albeit parameter dependent, shows that both the isotopic composition and the chemical abundances measured in tektites can be produced by evaporation in a diffusion-limited regime.  相似文献   

9.
Currently, nanotechnology has gained much interest due to the unique properties of nanomaterials in science and technology. Different types of metallic nanoparticles are routinely synthesized. However, their release into the aquatic environments is a major ecotoxicological concern. In this scenario, it is important to study the potential impact of engineered nanoparticle in aquatic organisms especially freshwater microcrustaceans, such as Ceriodaphnia cornuta. In this study, ZnO NPs were synthesized using the aqueous leaf extracts of Musa paradisiaca and physico-chemically characterized by UV–Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infra red (FTIR), scanning electron microscopy (SEM) and atomic force microscopy (AFM). UV–Vis spectroscopy recorded the absorbance peak of ZnO NPs at 338 nm. XRD analysis showed the various Bragg’s reflection peaks at 100, 002, 101, 102, 110, 103, 200, 112, 201, 004 and 202 lattice planes. FTIR spectroscopy outlined sharp intense peaks at 3416 cm−1, 1388 and 1416 cm−1. SEM showed the spherical shape of ZnO NPs with mean particle size of 23.3 nm. AFM confirmed the spherical shape, nanosize and 3D topography of NPs. The ecotoxicity of ZnO NPs was tested on the freshwater crustacean C. cornuta. ZnO NPs were comparatively less toxic than zinc acetate. ZnO NPs caused 42% mortality of C. cornuta at 50 μg mL−1. However, 80% mortality was observed at 50 μg mL−1 of zinc acetate after 24 h. Light and confocal laser scanning microscopic images evidenced the uptake and accumulation of ZnO NPs in the gut of C. cornuta at 50 μg mL−1 after 24 h. Structural deformities were observed on C. cornuta after treatment with 50 μg mL−1 of ZnO NPs. Overall, this study describes the potential impact of the biologically synthesized ZnO NPs in comparison with zinc acetate in the freshwater crustacean C. cornuta.  相似文献   

10.
《Continental Shelf Research》2006,26(17-18):2241-2259
The Amazon River spawns a vast mobile mudbelt extending ∼1600 km from the equator to the Orinoco delta. Deposits along the Amazon–Guianas coastline are characterized by some of the highest Corg remineralization rates reported for estuarine, deltaic, or shelf deposits, however, paradoxically, except where stabilized by mangroves or intertidal algal mats, they are usually suboxic and nonsulfidic. A combination of tides, wind-driven waves, and coastal currents forms massive fluid muds and mobile surface sediment layers ∼0.5–2 m thick which are dynamically refluxed and frequently reoxidized. Overall, the seabed functions as a periodically mixed batch reactor, efficiently remineralizing organic matter in a gigantic sedimentary incinerator of global importance. Amazon River material entering the head of this dynamic dispersal system carries an initial terrestrial sedimentary Corg loading of ∼ 0.7 mg C m−2 particle surface area. Total Corg loading is lowered to ∼ 0.2 mg C m−2 in the proximal delta topset, ∼60–70% of which remains of terrestrial origin. Loading decreases further to 0.12–0.14 mg C m−2 (∼60% terrestrial) in mudbanks ∼600 km downdrift along French Guiana, values comparable to those found in the oligotrophic deepsea. DOC/ΣCO2 ratios in pore waters of French Guiana mudbanks indicate that >90% of metabolized organic substrates are completely oxidized. Within the Amazon delta topset at the head of the dispersal system, both terrestrial and marine organic matter contribute substantially to early diagenetic remineralization, although reactive marine substrate dominates (∼60–70%). The conditional rate constant for terrestrial Corg in the delta topset is ∼0.2 a−1. As sedimentary Corg is depleted during transit, marine sources become virtually the exclusive substrate for remineralization except very near the mangrove shoreline. The δ13C and Δ14C values of pore water ΣCO2 in mudbanks demonstrate that the primary source of remineralized organic matter within ∼1 km of shore is a small quantity of bomb signature marine plankton (+80‰). Thus, fresh marine organic material is constantly entrained into mobile deposits and increasingly drives early diagenetic reactions along the transit path. Relatively refractory terrestrial Corg is lost more slowly but steadily during sedimentary refluxing and suboxic diagenesis. Amazon Fan deposits formed during low sea level stand largely bypassed this suboxic sedimentary incinerator and stored material with up to ∼3X the modern high stand inner shelf Corg load (Keil et al., 1997b. Proceedings of the Ocean Drilling Program, Scientific Results. Vol. 155. pp. 531–537). Sedimentary dynamics, including frequency and magnitude of remobilization, and the nature of dispersal systems are clearly key controls on diagenetic processes, biogeochemical cycling, and global C storage along the continental margins.  相似文献   

11.
Ten native plants species that grow in three tailings dams from Ag, Pb, Cu and Zn mine in Queretaro, Mexico were studied. Total concentrations in tailings were 183–14,660 mg/kg As, 45–308 mg/kg Cd, 327–1754 mg/kg Pb, 149–459 mg/kg Cu and 448–505 mg/kg Zn. In the three tailings dams, the solubility of these elements is low. Tailings in dam 1 are acid generating while tailings in dams 2 and 3 are not acid-generating potential. Plants species that accumulate arsenic and heavy metals was identified; Nicotina glauca generally presented the highest concentrations (92 mg/kg As, 106 mg/kg Cd, 189 mg/kg Pb, 95 mg/kg Cu and 1985 mg/kg Zn). Other species that accumulate these elements are Flaveria pubescens, Tecoma stans, Prosopis Sp, Casuarina Sp and Maurandia antirrhiniflora. Two species were found that accumulates a large amount of metals in the root, Cenchrus ciliaris and Opuntia lasiacantha. Concentrations in soils in which plants grow were 488–5990 mg/kg As, 5–129 mg/kg Cd, 169–3638 mg/kg Pb, 159–1254 mg/kg Cu and 1431–13,488 mg/kg Zn. The Accumulation Factor (AF) determined for plants was less than 1, with exception of N. glauca for Cd. The correlation between arsenic and heavy metals found in soils and plants was low. Knowledge of plant characteristics allows it use in planning the reforestation of tailings dams in controlled manner. This will reduce the risk of potentially toxic elements are integrated into the food chain of animal species.  相似文献   

12.
Parallel factor analysis of fluorescence excitation emission matrices of surface water samples of a globally large river (Yangtze River, China) watershed identified three classes of fluorescent dissolved organic matter (FDOM) that had ex/em = 280/330 nm, 305/385 nm and 350/450 nm respectively, resembling “peak T”, “peak M” and “peak C” commonly identified in natural water, respectively. Peak T (a tyrosine/tryptophan-like FDOM) did not show correlations to peak M or C which were humic-like substances, while a positive correlation (r = 0.935, p < 0.001) was present between the natural log-transformed maximum fluorescence intensity (Fmax) of peaks T and M indicating a tight link during their production and processing. Fmax values (in Raman unit nm?1) normalized to dissolved organic carbon (DOC) concentration were low, varying in ranges 15.93–85.95, 29.83–83.54 and 19.73–51.05 × 10?5 nm?1 (μmol/L)?1 for peaks T, M and C, respectively, in line with the history of strong photobleaching of the water samples as indicated by fairly high absorption spectral slope ratios (0.75–1.53 with a mean 1.03). Intermediate fluorescence index (FI) (1.46–1.83 with a mean 1.61) and small specific absorption at 254 nm (0.64–1.93 with a mean 1.15 m?1 mg?1 L) of the water samples, indicated the presence of both aquatic microbial DOM (e.g. peak T) and soil DOM (e.g. peak C). Peak C could be substantially removed by UV-A (320–400 nm) irradiation, while peak M was slightly increased when a microbe-containing water was exposed to the same UV-A irradiation. Taken together, peak C was attributed to diffuse soil source while peak M was likely attributed to joint effects of microbial activities and solar irradiation on the chromophores in the sample.  相似文献   

13.
While specialized species are linked to a particular resource, omnivorous species may switch between food items according to the availability and the quality of resources. Here we use larvae of the omnivorous caddisfly genus Hydropsyche (Trichoptera) to analyse changes in diet composition across an elevational gradient. Periphyton and Hydropsyche larvae were sampled from 22 populations at stream orders from 2 to 5 on the German part of the Bohemian Forest. Elevations of sampling sites ranged between 300 m and 900 m a.s.l.. Diet composition was estimated by the analyses of the gut content of larvae as well as by stable nitrogen isotopes (δ15N). The δ15N values of the periphyton decreased and the C/N ratio of periphyton increased with increasing environmental harshness (decreasing water pH, temperature and conductivity with increasing elevation) indicating a decrease of periphyton food quality. Across individuals, the proportion of animals in the gut of Hydropsyche larvae was positively related to the difference of δ15N values between larvae and periphyton. The proportion of animals within the gut and (baseline corrected) δ15N values of Hydropsyche populations increased with increasing environmental harshness. We suggest that the (i) low primary production caused by shading, low temperatures and low nutrient levels, (ii) the low nutrient quality of periphyton and (iii) the availability of animal prey due to the input of allochthonous resources in headwaters caused the shift in the diet of Hydropsyche larvae along the river continuum.  相似文献   

14.
Knowing the aquatic resources, such as emerging insects, that are entering terrestrial systems is important for food web and conservation studies, especially when water availability or quality is limited. Even though studies concerning benthic macroinvertebrates are numerous, insect emergence from lakes is less studied.To understand if water parameters (e.g., water temperature, oxygen concentration etc) determine insect emergence and the possible seasonal differences, we collected emergent insects from three different lakes in South Germany, during three seasons. We searched for common patterns of insect emergence at the three lakes. Moreover, the relative contribution of insects of aquatic origin to aerial flying arthropods was assessed, with collecting aerial flying arthropods at the shore.Chironomidae constituted the highest number of emerged insects in all lakes, however different patterns of emergence occurred in each lake (unimodal vs. bimodal) with different season-dependent times for the emergence peaks (spring, summer, beginning of autumn). Aquatic insects constituted a considerable proportion (at least 17%) of the aerial flying arthropods at the shore. The variation in insect emergence was explained by water temperature, however not by other water parameters or the nutrient values. Seasonal and spatial differences in insect emergence, should be considered when investigating aquatic-terrestrial interactions and designing conservation plans. A total biomass of up to 1.8 g m−2 of emerging insects from the littoral zone of Lake Constance can enter the terrestrial system in a year. We also provide length-dry weight relationships for emerged (adult) Chironomidae. These equations are useful to estimate the dry insect biomass from length data and currently such data lack for adult aquatic insects.  相似文献   

15.
The Alleret maar (Massif Central, France) is part of the few Western European early middle Pleistocene lacustrine sequences. In the AL3 core several new ash layers were recovered in the 10 first meters of the sedimentary filling. We obtained three 40Ar/39Ar ages, which range from 683 ± 5 ka (MSWD: 1.2, n = 17) to 722 ± 6 ka (MSWD: 3.2, n = 18). All the studied ash layers belong to the Super-Besse eruptive cycle of the Sancy volcano. Based on the chronostratigraphy that we have derived we estimate that the age of the main eruption could correspond to the Sancy volcano caldera formation at 725 ka close to the end of MIS 18 and that the Super-Besse explosive episode duration lasted only about 40 ka. The time framework we build evidences that the Alleret lacustrine sequence represents a time interval of probably 180 ka spanning from MIS 18 to MIS 14. This sequence offers the first well constrained comparison between terrestrial environmental history and that preserved in marine sediments during the Mid-Pleistocene Revolution.  相似文献   

16.
Seasonal patterns in factors that affect primary producers are an important part of defining the structure and function of aquatic ecosystems. However, defining seasonality is often more difficult in aquatic than in terrestrial ecosystems, particularly in subtropical and tropical environments. In this study, a long-term data set for a shallow subtropical lake (Lake George, Florida, USA) was used to investigate seasonality using a range of physical, chemical and hydrological parameters. K-means cluster analysis of monthly averages among 11 selected environmental factors across 18 years suggested the overall annual pattern consists of three different seasonal clusters: a cold season (January–April), a warm season (May–August) and a flushing season (September–December). High dissolved oxygen and increased Secchi depth are key features of the cold season, while the warm season is characterized by high mean light irradiances, temperature, rainfalls, total nitrogen and phytoplankton biomass (as chlorophyll a level). The flushing season is characterized by high river discharge rates and high levels of dissolved nutrients and colored organic matter. Multiple response permutation procedures indicated that these seasonal cluster arrangements were significantly different than randomly permuted clusters (A-statistics = 0.3314, significance of delta = 0.0160, based on 1000 permutations). Results from principal component analyses supported the presence of the three seasons in the lake. Linear models explaining chlorophyll a levels using the 3-season system generally indicated better ratios of explained variance compared to the models without seasonal alignments, further indicating that even for sub-tropical systems defining seasons provides a better understanding of phytoplankton dynamics. The approaches used in this study provide statistically-based multivariate tools for the definition of seasonality in aquatic ecosystems. The ability to accurately define seasons is a key step in modeling the structure and dynamics of aquatic ecosystem, which is essential to the development of effective management strategies in a rapidly changing world.  相似文献   

17.
《Marine pollution bulletin》2009,58(6-12):883-888
Mussels (Mytilus galloprovincialis) were transplanted to seven stations around a large shipyard for 126 days to evaluate tributyltin (TBT) contamination. Although the application of TBT-based paints to ships is totally banned in Korea, butyltin compounds were found to accumulate in mussels following transplantation. Concentrations of TBT and total butyltins in transplanted mussels near the shipyard were in the range of 40–350 ng Sn/g and 74–530 ng Sn/g on a dry weight basis, respectively. Obviously, low TBT concentrations (6.0–53 ng Sn/g dw) were determined in mussels at four stations outside the shipyard. A negative gradient of TBT concentrations and TBT portion to total butyltin concentrations were found in both the surface water and transplanted mussels according to distance from the shipyard. In addition, TBT concentrations in surface water and transplanted mussels showed significant correlation (r2 = 0.71; p < 0.001). These results indicate that the shipyard still releases fresh TBT into surrounding waters even after TBT regulation in Korea, and mussel transplantation is useful in evaluating TBT contamination in shipyard area.  相似文献   

18.
We elucidate the ecology of Recent Ostracoda from a deep brackish lake, Tangra Yumco (30°45′—31°22′N and 86°23′—86°49′E, 4595 m a.s.l.) and adjacent waters on the southern Tibetan Plateau. Ostracod associations (living and empty valves) in sixty-six sediment samples collected from diverse aquatic habitats (lakes, estuary-like water and lagoon-like water waters, rivers, ponds and springs) were quantitatively assessed.Eleven Recent Ostracoda were found (nine living and two as empty valves only). Cluster analysis established two significant (p < 0.05) habitat specific associations; (i) Leucocytherella sinensis, Limnocythere inopinata, Leucocythere? dorsotuberosa, Fabaeformiscandona gyirongensis and Candona xizangensis are lacustrine fauna. (ii) Tonnacypris gyirongensis, Candona candida, Ilyocypris sp., Heterocypris incongruens and Heterocypris salina are temporary water species.Ostracod distribution and abundance are significantly (p < 0.05) correlated to physico-chemical variables. The first two axes of a canonical correspondence analysis (CCA) explain 30.9% of the variation in the species abundance data. Conductivity and habitat types are the most influential ecological factors explaining the presence and abundance of ostracods. Spearman correlation analysis reveals that: (i) Two species, L.? dorsotuberosa (r = 0.25) and L. inopinata (r = 0.36) have a significant positive correlation with conductivity while one species, T. gyirongensis (r = −0.68) displays a significant negative correlation with conductivity. Limnocythere inopinata correlates significantly positive (r = 0.37) with alkalinity. Fabaeformiscandona gyirongensis correlates significantly positive (r = 0.28) with water depth.Key indicator living assemblages are: (i) L. sinensis dominates Ca-depleted brackish waters although ubiquitously distributed; (ii) L.? dorsotuberosa dwells in fresh to brackish waters; (iii) L. inopinata predominates in mesohaline to polyhaline waters; (iv) F. gyirongensis inhabits exclusively brackish-lacustrine deeper waters; (v) C. candida populates freshwaters; (vi) T. gyirongensis and Ilyocypris sp. are restricted to shallow temporary waters; (vii) H. incongruens occurs in ponds.Water depth indicators are F. gyirongensis and L.? dorsotuberosa, useful in ostracod assemblages for palaeo-water depth reconstruction.Our results expand the knowledge of the ecological significance of Recent Tibetan Ostracoda ecology. This is a new insight on habitat chacteristics of both living assemblages and sub-Recent associations of ostracods in mountain aquatic ecosystems. The new modern ostracod dataset can be used for the quantitative reconstruction of past environmental variables (e.g., conductivity) and types of water environment. The key indicator ostracods are relevant in palaeolimnological and climate research on the Tibetan Plateau.  相似文献   

19.
Coupled 187Os/188Os and highly siderophile element (HSE: Os, Ir, Ru, Pt, Pd, and Re) abundance data are reported for pristine lunar crustal rocks 60025, 62255, 65315 (ferroan anorthosites, FAN) and 76535, 78235, 77215 and a norite clast in 15455 (magnesian-suite rocks, MGS). Osmium isotopes permit more refined discrimination than previously possible of samples that have been contaminated by meteoritic additions and the new results show that some rocks, previously identified as pristine, contain meteorite-derived HSE. Low HSE abundances in FAN and MGS rocks are consistent with derivation from a strongly HSE-depleted lunar mantle. At the time of formation, the lunar floatation crust, represented by FAN, had 1.4 ± 0.3 pg g? 1 Os, 1.5 ± 0.6 pg g? 1 Ir, 6.8 ± 2.7 pg g? 1 Ru, 16 ± 15 pg g? 1 Pt, 33 ± 30 pg g? 1 Pd and 0.29 ± 0.10 pg g? 1 Re (~ 0.00002 × CI) and Re/Os ratios that were modestly elevated (187Re/188Os = 0.6 to 1.7) relative to CI chondrites. MGS samples are, on average, characterised by more elevated HSE abundances (~ 0.00007 × CI) compared with FAN. This either reflects contrasting mantle-source HSE characteristics of FAN and MGS rocks, or different mantle–crust HSE fractionation behaviour during production of these lithologies. Previous studies of lunar impact-melt rocks have identified possible elevated Ru and Pd in lunar crustal target rocks. The new results provide no supporting evidence for such enrichments.If maximum estimates for HSE in the lunar mantle are compared with FAN and MGS averages, crust–mantle concentration ratios (D-values) must be ≤ 0.3. Such D-values are broadly similar to those estimated for partitioning between the terrestrial crust and upper mantle, with the notable exception of Re. Given the presumably completely different mode of origin for the primary lunar floatation crust and tertiary terrestrial continental crust, the potential similarities in crust–mantle HSE partitioning for the Earth and Moon are somewhat surprising. Low HSE abundances in the lunar crust, coupled with estimates of HSE concentrations in the lunar mantle implies there may be a ‘missing component’ of late-accreted materials (as much as 95%) to the Moon if the Earth/Moon mass-flux estimates are correct and terrestrial mantle HSE abundances were established by late accretion.  相似文献   

20.
Acid deposition during the 20th century led to the gradual elimination of fish in Brooktrout Lake (Adirondack Mountains, New York State). Thereafter, the lake was colonized by Chaoborus americanus, a dipteran with an aquatic larval stage that typically resides in the pelagic zone in fishless lakes. During subsequent chemical recovery from acidification, the lake was stocked with Brook Trout (Salvelinus fontinalis). For seven years following this reintroduction we examined the re-adaptation of the food chain. The C. americanus abundance and distribution was quantified utilizing a combination of hydroacoustics, traditional vertical net tows and Schindler-Patalas trap collections. Hydroacoustic backscattering signals were repeatable and correlated (r = 0.86, p = 0.003) with C. americanus abundance. Backscattering, depth, month and year were used to develop a random forest model that predicted the C. americanus density (r2 = 0.67,  p< 0.05). The hydroacoustic signal revealed a clear but limited diurnal vertical migration of C. americanus. The signal continued in the presence of the fish population beginning with reintroduction in 2005 and extending through 2011. In 2012, the hydroacoustic signal no longer was present in the lake, suggesting that the fish had eliminated the C. americanus population, which was verified with net tows. Using novel and traditional survey methods, we demonstrate that the reintroduction of fish can alter the lake community structure significantly through the extirpation of the major component of the pelagic zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号