首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Marine pollution bulletin》2009,58(6-12):349-356
This study examined the phosphorus retention and release characteristics of sediments in the eutrophic Mai Po Marshes in Hong Kong. Results of chemical fractionation show that the sum of inorganic P pools exceeded 50% of the total sediment P content, with the redox-sensitive iron-bound P (Fe(OOH)  P) being the dominant P fraction. Given the considerable average Fe(OOH)  P concentration of 912 μg g−1, Mai Po sediments demonstrated a great potential to release bioavailable P under low sediment redox potentials. This was further supported by the high mean anaerobic P flux of 31.8 mg m−2 d−1 recorded in Mai Po sediment cores, indicating the role of bottom sediments as a net P source. Although sediments in Mai Po had appreciable Langmuir adsorption maxima (1642–3582 mg kg−1), the high zero equilibrium P concentrations (0.02–0.51 mg L−1) obtained suggest that sediment sorption processes would contribute to sustaining the eutrophic conditions in overlying water column even with a further reduction in external P load. Concerted efforts should be made to reduce internal loading of P, especially under reducing conditions, to complement the implementation of zero discharge policy for Deep Bay for effective eutrophication abatement and long-term water quality improvement in the Mai Po Marshes.  相似文献   

2.
《Marine pollution bulletin》2012,64(5-12):523-527
Concentrations of trace metals (Zn, Cr, Cu, V, Cd and Pb), total organic carbon (TOC), black carbon (BC) and their granulometry were examined in 25 surface sediment samples from the northern Bering Sea, Chukchi Sea and adjacent areas. Trace metal concentrations in the sediments varied from 21.06–168.21 mg kg−1 for Zn, 8.91–46.94 mg kg−1 for Cr, 2.69–49.39 mg kg−1 for Cu, 32.46–185.54 mg kg−1 for V, 0.09–0.92 mg kg−1 for Cd, and 0.95–15.25 mg kg−1 for Pb. The geoaccumulation index (Igeo) indicated that trace metal contamination (Zn and Cd) existed in some stations of the study area. The distribution of grain size plays an important role in influencing the distribution of trace metals (Zn, Cr, Cu, V, and Pb) in sediments from the Chukchi Sea and adjacent areas.  相似文献   

3.
《Journal of Hydrology》2006,316(1-4):213-232
The Magdalena River, a major fluvial system draining most of the Colombian Andes, has the highest sediment yield of any medium-sized or large river in South America. We examined sediment yield and its response to control variables in the Magdalena drainage basin based on a multi-year dataset of sediment loads from 32 tributary catchments. Various morphometric, hydrologic, and climatic variables were estimated in order to understand and predict the variation in sediment yield. Sediment yield varies from 128 to 2200 t km−2 yr−1 for catchments ranging from 320 to 59,600 km2. The mean sediment yield for 32 sub-basins within the Magdalena basin is ∼690 t km−2 yr−1. Mean annual runoff is the dominant control and explains 51% of the observed variance in sediment yield. A multiple regression model, including two control variables, runoff and maximum water discharge, explains 58% of the variance. This model is efficient (ME=0.89) and is a valuable tool for predicting total sediment yield from tributary catchments in the Magdalena basin. Multiple correlations for those basins corresponding to the upper Magdalena, middle basin, Eastern Cordillera, and catchment areas greater than 2000 km2, explain 75, 77, 89, and 78% of the variance in sediment yield, respectively. Although more variance is explained when dataset are grouped into categories, the models are less efficient (ME<0.72). Within the spatially distributed models, six catchment variables predict sediment yield, including runoff, precipitation, precipitation peakedness, mean elevation, mean water discharge, and relief. These estimators are related to the relative importance of climate and weathering, hillslope erosion, and fluvial transport processes. Time series analysis indicates that significant increases in sediment load have occurred over 68% of the catchment area, while 31% have experienced a decreasing trend in sediment load and thus yield. Land use analysis and increasing sediment load trends indicate that erosion within the catchment has increased over the last 10–20 years.  相似文献   

4.
《Marine pollution bulletin》2009,58(6-12):280-286
The effects of prolonged exposure to reduced oxygen levels (3.0 and 1.5 mg O2 l−1) on marine scavenging gastropods Nassarius festivus were studied for 8 weeks. The percentages of individuals engaged in feeding and amount of food consumed were reduced as oxygen level decreased; absorption efficiency, however, did not vary significantly with oxygen level. Oxygen consumption rates and specific oxygen consumption rates were lower at reduced oxygen levels. Reproduction occurred at all oxygen levels with less egg capsules being produced at lower oxygen levels. Egg size and number of eggs per capsule, however, were not significantly affected by oxygen level. The increase in shell length was 12%, 6% and 5% at 6.0 mg O2 l−1 (normoxia), 3.0 mg O2 l−1 and 1.5 mg O2 l−1, respectively. At the end of the experiment, the amount of energy allocated to growth and reproduction decreased at reduced oxygen levels with values obtained at 3.0 mg O2 l−1 and 1.5 mg O2 l−1 being 48% and 70% lower than those at 6.0 mg O2 l−1. At all oxygen levels, most of the accumulated energy was allocated to shell growth and reproduction, and the amount allocated to somatic growth was relatively insignificant. The reduction in energy allocated to reproduction was greater than that to shell growth as the oxygen level was reduced, indicating a strategic energy allocation of marine scavengers under stressful conditions to enhance survival.  相似文献   

5.
《Continental Shelf Research》2006,26(17-18):2125-2140
Sediment delivered to coastal systems by rivers (15×109 tons) plays a key role in the global carbon and nutrient cycles, as deltas and continental shelves are considered to be the main repositories of organic matter in marine sediments. The Mississippi River, delivering more than 60% of the total dissolved and suspended materials from the conterminous US, dominates coastal and margin processes in the northern Gulf of Mexico. Draining approximately 41% of the conterminous US, the Mississippi and Atchafalaya river system deliver approximately 2×108 tons of suspended matter to the northern Gulf shelf each year. Unlike previous work, this study provides a comprehensive evaluation of sediment accumulation covering majority of the shelf (<150 m water depth) west of the Mississippi Delta from 92 cores collected throughout the last 15 years. This provides a unique and invaluable data set of the spatial and modern temporal variations of the sediment accumulation in this dynamic coastal environment.Three types of 210Pb profiles were observed from short cores (15–45 cm) collected on the shelf. Proximal to Southwest Pass in 30–100 m water depths, non-steady-state profiles were observed indicating rapid accumulation. Sediment accumulation rates in this area are typically >2.5 cm yr−1 (>1.8 g cm−2 yr−1). Kasten cores (∼200 cm in length) collected near Southwest Pass also indicate rapid deposition (>4 cm yr−1; >3 g cm−2 yr−1) on a longer timescale than that captured in the box cores. Near shore (<20 m), profiles are dominated by sediments reworked by waves and currents with no accumulation (the exception is an area just south of Barataria Bay where accumulation occurs). The remainder of the shelf (distal of Southwest Pass) is dominated by steady-state accumulation beneath a ∼10-cm thick mixed layer. Sediment accumulation rates for the distal shelf are typically <0.7 cm yr−1 (<0.5 g cm−2 yr−1). A preliminary sediment budget based on the distribution of 210Pb accumulation rates indicates that 40–50% of the sediment delivered by the river is transported out of the study region. Sediment is moved to distal regions of the shelf/slope through two different mechanisms. Along-isobath sediment movement occurs by normal resuspension processes west of the delta, whereas delivery of sediments south and southwest of the delta may be also be influenced by mass movement events on varying timescales.  相似文献   

6.
《Marine pollution bulletin》2014,78(1-2):224-229
The concentrations of 16 polycyclic aromatic hydrocarbons (PAHs) were determined in the sediment from the Hormuz strait, Persian Gulf. The sum of 16 PAHs (ΣPAH) concentrations varied from 72.17 to 277.77 ng g−1 dry weight, with an average value of 131.20 ± 59.29 ng g−1 dry weight. An ecological risk assessment of PAHs, indicated that adverse biological effects caused by acenaphthene and acenaphthylene occasionally may take place in the sediment of Hormuz strait. PAH source identification showed that the PAHs in the sediments come from pyrogenic and mixed origin. Based on classification of pollution levels, sediments from Hormuz strait could be considered as low to moderately polluted with PAHs.  相似文献   

7.
《Marine pollution bulletin》2009,58(6-12):403-408
Laboratory experiments were carried out to investigate the adsorption behaviour of dibutyl phthalate (DBP) on marine sediments collected from five different sites in Victoria Harbour, Hong Kong. DBP adsorption can be well described by the Langmuir isotherm. The maximum DBP adsorption capacity (Qmax) of the marine sediments ranges from 53 to 79 mg g−1, which has a positive correlation with their organic content. Around 90% of the organic can be removed from the sediments with treatment by H2O2 oxidation, and the Qmax then decreases to a range between 13 and 22 mg g−1. The black carbon content of the sediments has a much greater DBP adsorption capacity than does the natural organic matter of the sediments. The amount of DBP adsorbed on the sediments increases as the salinity of the marine water increases.  相似文献   

8.
The Senegal River is of intermediate size accommodating at present about 3.5 million inhabitants in its catchment. Its upstream tributaries flow through different climatic zones from the wet tropics in the source area in Guinea to the dry Sahel region at the border between Senegal and Mauritania. Total suspended matter, particulate and dissolved organic carbon and nitrogen as well as nutrient concentrations were determined during the dry and wet seasons at 19 locations from the up- to downstream river basin. The aims of the study were to evaluate the degree of human interference, to determine the dissolved and particulate river discharges into the coastal sea and to supply data to validate model results. Statistical analyses showed that samples from the wet and dry season are significantly different in composition and that the upstream tributaries differ mainly in their silicate and suspended matter contents. Nutrient concentrations are relatively low in the river basin, indicating low human impact. Increasing nitrate concentrations, however, show the growing agriculture in the irrigated downstream areas. Particulate organic matter is dominated by C4 plants during the wet season and by aquatic plankton during the dry season. The total suspended matter (TSM) discharge at the main gauging station Bakel was about 1.93 Tg yr−1 which is in the range of the only available literature data from the 1980s. The calculated annual discharges of particulate organic carbon (POC), dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) are 55.8 Gg yr−1, 54.1 Gg yr−1, and 5.3 Gg yr−1, respectively. These first estimates from the Senegal River need to be verified by further studies.  相似文献   

9.
The Chilean Patagonian fjords region (41–56°S) is characterized by highly complex geomorphology and hydrographic conditions, and strong seasonal and latitudinal patterns in precipitation, freshwater discharge, glacier coverage, and light regime; all of these directly affect biological production in the water column. In this study, we compiled published and new information on water column properties (primary production, nutrients) and surface sediment characteristics (biogenic opal, organic carbon, molar C/N, bulk sedimentary δ13Corg) from the Chilean Patagonian fjords between 41°S and 55°S, describing herein the latitudinal pattern of water column productivity and its imprint in the underlying sediments. Based on information collected at 188 water column and 118 sediment sampling sites, we grouped the Chilean fjords into four main zones: Inner Sea of Chiloé (41° to ~44°S), Northern Patagonia (44° to ~47°S), Central Patagonia (48–51°S), and Southern Patagonia (Magellan Strait region between 52° and 55°S). Primary production in the Chilean Patagonian fjords was the highest in spring–summer, reflecting the seasonal pattern of water column productivity. A clear north–south latitudinal pattern in primary production was observed, with the highest average spring and summer estimates in the Inner Sea of Chiloé (2427 and 5860 mg C m?2 d?1) and Northern Patagonia (1667 and 2616 mg C m?2 d?1). This pattern was closely related to the higher availability of nutrients, greater solar radiation, and extended photoperiod during the productive season in these two zones. The lowest spring value was found in Caleta Tortel, Central Patagonia (91 mg C m?2 d?1), a site heavily influenced by glacier meltwater and river discharge loaded with glacial sediments. Biogenic opal, an important constituent of the Chilean fjord surface sediments (SiOPAL ~1–13%), reproduced the general north–south pattern of primary production and was directly related to water column silicic acid concentrations. Surface sediments were also rich in organic carbon content and the highest values corresponded to locations far away from glacier influence, sites within fjords, and/or semi-enclosed and protected basins, reflecting both autochthonous (water column productivity) and allochthonous sources (contribution of terrestrial organic matter from fluvial input to the fjords). A gradient was observed from the more oceanic sites to the fjord heads (west–east) in terms of bulk sedimentary δ13Corg and C/N ratios; the more depleted (δ13Corg ?26‰) and higher C/N (23) values corresponded to areas close to rivers and glaciers. A comparison of the Chilean Patagonian fjords with other fjord systems in the world revealed high variability in primary production for all fjord systems as well as similar surface sediment geochemistry due to the mixing of marine and terrestrial organic carbon.  相似文献   

10.
《Marine pollution bulletin》2009,58(6-12):703-706
PAH-degrading microbial consortium and its pyrene-degrading plasmids were enriched from the sediment samples of Huian mangroves. The consortium YL showed degrading abilities of 92.1%, 87.6%, 92.3%, and 95.8% for pyrene, fluoranthene, phenanthrene, and fluoene at 50 mg l−1 after 21 days incubation, respectively. The dynamics of pH changes in the cultures was consistent with that of PAH concentration change. Bacillus cereus Py5 and Bacillus megaterium Py6 were isolated from the consortium and observed consuming 65.8% and 33.7% of pyrene (50 mg l−1) within three weeks, respectively. The enriched Escherichia coli DH5α cells containing the plasmids of YL were demonstrated to degrade 85.7% of the original pyrene concentration at the 21st day.  相似文献   

11.
《Marine pollution bulletin》2011,62(7-12):399-412
In order to quantify the spatial and seasonal variations of sediment oxygen consumption and nutrient fluxes, we performed a spatial survey in the south west lagoon of New Caledonia during the two major seasons (dry and wet) based on a network of 11 sampling stations. Stations were selected along two barrier reef to land transects representing most types of sediments encountered in the lagoon. Fluxes were measured using ex-situ sediment incubations and compared to sediment characteristics. Sediment oxygen consumption (SOC) varied between 500 and 2000 μmol m−2 h−1, depending on season and stations. Nutrient effluxes from sediment were highly variable with highest fluxes measured in muddy sediments near the coast. Inter-sample variability was as high as seasonal differences so that no seasonally driven temperature effect could be observed on benthic nutrient fluxes in our temperature range. Nutrient fluxes, generally directed from the sediment to the water column, varied between −5.0 and 70.0 μmol m−2 h−1 for ammonia and between −2.5 and +12.5 μmol m−2 h−1 for PO4 and NO2+3. SOC and nutrient fluxes were compared to pelagic primary production rates in order to highlight the tight coupling existing between the benthic and pelagic compartments in this shallow tropical lagoon. Under specific occasions of low pelagic productivity, oxygen sediment consumption and related carbon and nutrient fluxes could balance nearly all net primary production in the lagoon. These biogeochemical estimates point to the functional importance of sediment biogeochemistry in the lagoon of New Caledonia.  相似文献   

12.
《Marine pollution bulletin》2009,58(6-12):419-424
In 2006, organotins pollution were investigated in the coastal environment of Xiamen, China. Six species of organotin compounds including tributyltin, triphenyltin and their degradation compounds were quantified in the dissolved and particulate phases of the water, and in the sediment using GC-FPD. The concentrations of organotin compounds ranged from 2.2 to 160 ng (Sn) L−1 dissolved in the water, 0.14–6.7 ng (Sn) L−1 in suspended particulate matter and nd  26 ng (Sn) g−1 (dry weight) in the sediment. The highest concentration of total organotin or tributyltin in water was found in a shipyard and at a station near the inlet of the harbor, indicating fresh inputs of antifouling paints to Xiamen’s coastal environment. Organotin speciation was performed on sediment cores to investigate contamination trends over the past ten years in the harbor. The results of 210Pb dating indicated that Xiamen western harbor suffered contamination during 2000. The environmental behavior of organotins such as the enhancement of the microlayer, partitioning between water/suspended particulate matter and between water/sediment are also discussed in this paper.  相似文献   

13.
The demand for clean water is on the increase as the population increases. One of the ways to address the water shortage is to treat the polluted water through removal of the contaminants. The use of adsorbents for pollutant removal is one of the promising methods. Seaweed is an aquatic plant and its sorption ability for selected metals in water was investigated in this study. We report the performance of the seaweed (Caulerpa serrulata) before and after modification with ethylenediamine (EDA), on adsorption of copper, lead and cadmium in aqueous solution. The adsorption capacities for Cu, Cd and Pb were 5.27 mg g−1, 2.12 mg g−1 and 2.16 mg g−1, respectively, with the EDA-modified seaweed, and 3.29 mg g−1, 4.57 mg g−1 and 1.06 mg g−1, with the unmodified weed, respectively. The pH for maximum adsorption was found to be within the range of pH 4–pH 6. In a separate investigation, it was found that 0.1 g of dried seaweed leached 20 mg of dissolved organic carbon (DOC) using 100 ml of distilled-deionised water. The resulting solution was green. The leaching phenomenon contributes to secondary pollution. Modification of the seaweed with EDA reduced the DOC content by half (50%) and also removed the green colouration. Kinetic studies showed that the adsorbent was able to take up to 95% of the metals (in synthetic standard solutions) in less than 10 min. The adsorbed metals were then stripped using a solution of 0.5 M HNO3 indicating that the adsorbent can be regenerated. In addition, the study revealed that modification improved the thermal stability of the adsorbent such that even when the temperature was raised to 1000 °C, more than 80% (compared to <50% for unmodified weed) of the modified adsorbent was not degraded, indicating that modification had a significant influence on the thermal stability of seaweed. The modified seaweed has been shown to have great potential for the removal of metals and DOC in polluted water. The modified adsorbent can therefore be applied for the removal of metals in polluted waters hence suitable for treatment of water for domestic consumption at a point of use.  相似文献   

14.
《Continental Shelf Research》2006,26(17-18):2260-2280
On October 3, 2002 Hurricane Lili made landfall on a previously studied region of the inner Louisiana shelf as a Category 2 storm with winds over 160 km/h. A week after the hurricane, major impacts of the storm were not evident in the water column except for the lower than expected inshore salinities (∼12 psu) for this time of year, which was characterized by low river discharge. Turbidity profiles were typical of those measured during previous investigations with suspended sediment concentrations >75 mg/L at inshore stations and <50 mg/L in surface waters and offshore. The implication is that the sediments resuspended during the hurricane settled soon after the storm passage. Water column particulate organic carbon (POC) concentrations ranged from 0.1 to over 2.0 mg/L, with the highest concentrations measured near the seabed and in the inshore portions of the study area. Suspended particles were characterized by low organic matter content (%POC of 0.5–2 wt%), low chlorophyll:POC ratios (Chl:POC<4 mg/g) and moderately elevated POC:particulate nitrogen ratios (POC:PN of 10–14 mol/mol), all suggesting their source was locally resuspended seabed sediment rather than from algal biomass or land-derived vascular plant detritus.Post hurricane sediment deposition throughout the study area resulted in a storm layer that ranged from <0.5 to 20 cm in thickness. In most locations sediment accumulation ranged from 3 to 10 cm. The storm deposits were generally composed of silty clays with a coarser, somewhat sandy 1–2 cm basal layer. Surface sediments from the storm layer were characterized by relatively high mineral surface areas (SA of 30–50 m2/g) and elevated OC contents (%OC of 1.0–2.0%). The dispersal of fine sediments following the hurricane resulted in marked changes in the SA and %OC values of surface sediments from offshore locations, which prior to the storm contained coarser, organic-poor particles (SA of 5–15 m2/g and %OC of 0.2–0.6%). The OC:SA and OC:N ratios of storm layer sediments ranged from 0.4 to 0.6 mg OC/m2 and from 10 to 12 mol/mol, respectively, and were comparable to those measured in surface sediments prior to the hurricane. Such similarities in the composition of the organic matter reinforce the idea that the source of the storm deposits was the finer fraction of resuspended seabed sediments, with little evidence for inputs from local land-derived sources or autochthonous algal production. Overall, the magnitude of sediment and organic matter deposition on the seabed after the storm greatly exceeded the annual inputs from the Atchafalaya River and coastal primary production. The combined effects of hurricane-driven erosion and post-storm deposition represent a major perturbation to the benthic community of the region, which is already subject to these types of disturbances due to the combined effects of peaks in river discharge and the passage of storm fronts.  相似文献   

15.
Thirty-five surface sediment samples collected from Beibu Gulf and its tributary rivers, China were analyzed for DDTs, HCHs and chlordanes. Total concentrations of DDTs, HCHs and chlordanes in sediments ranged from 0.59 to 126 ng g1, ND to 2.65 ng g1 and 0.27 to 3.41 ng g1 based on dry weight (dw), respectively. Concentrations of DDTs were higher than those reported in the sediments from other regions of the world, while concentrations of HCHs and chlordanes were relatively low. High concentrations of DDTs were observed in the harbor region and aquaculture bases and high concentrations of HCHs were found in the Qin River Estuary. The ratios of (DDE + DDD)/DDTs reflected a mixed input of weathered and fresh DDTs. The predominant β-HCH indicated that HCHs in the study area mainly originated from the historical usage of technical HCH. The residues of DDTs would pose adverse biological effects on the study area.  相似文献   

16.
《Marine pollution bulletin》2012,64(5-12):255-261
Mussels were maintained for 4 weeks under different combinations of dissolved oxygen concentration (1.5, 3.0 and 6.0 mg O2 l−1) and salinity (15, 20, 25 and 30) in a 3 × 4 factorial design experiment. Clearance rate (CR), absorption efficiency (AE), respiration rate (RR) and scope for growth (SFG) decreased with decreasing salinity and dissolved oxygen concentration (DO), while excretion rate (ER) increased with decreasing salinity and increasing DO. The O:N ratio was <10 at salinities of 15 and 20, irrespective of DO levels. SFG was negative in most of the treatments, except for those under 6.0 mg O2 l−1 or at a salinity of 30 when DO was lower. The results may help explain the distribution pattern of Perna viridis in Hong Kong waters and provide guidelines for mussel culture site selection.  相似文献   

17.
《Marine pollution bulletin》2009,58(6-12):707-715
Sixteen sediment samples collected from eight transects in a mangrove swamp of the Jiulong River Estuary, Fujian, China were investigated for their content of polycyclic aromatic hydrocarbons (PAHs) and the biodegradation potential of the indigenous microorganisms. The bacterial community structures in the mangrove sediments and in enrichment cultures were also investigated. The results showed that the total PAHs concentration of mangrove sediments ranged from 280 to 1074 ng g−1 dry weight, that the PAHs composition pattern in the mangrove sediments was dominated by high molecular weight PAH components (4–6 rings), and that Benzo[ghi]perylene and Indeno[1,2,3-cd]pyrene were the most dominant at different stations. Abundant PAH-degrading bacteria were found in all the stations, the values of phenanthrene-degrading bacteria ranged from 5.85 × 104 to 7.80 × 105 CFU g−1 dry weight, fluoranthene-degrading bacteria ranged from 5.25 × 104 to 5.79 × 105 CFU g−1 dry weight, pyrene-degrading bacteria ranged from 3.10 × 104 to 6.97 × 105 CFU g−1 dry weight and the benzo(a)pyrene-degrading bacteria ranged from 5.25 × 104 to 7.26 × 105 CFU g−1 dry weight. DGGE analysis of PCR-amplified 16S rDNA gene fragments confirmed that there was a remarkable shift in the composition of the bacterial community due to the addition of the different model PAH compound phenanthrene (three ring PAH), fluoranthene(four ring PAH), pyrene(four ring PAH) and benzo(a)pyrene(five ring PAH) during enrichment batch culture. Eleven strains were obtained with different morphology and different degradation ability. The presence of common bands for microbial species in the cultures and in the native mangrove sediment DNA indicated that these strains could be potential in situ PAH-degraders.  相似文献   

18.
《Continental Shelf Research》2006,26(17-18):2073-2091
The eastern part of the chenier plain of the Louisiana coast has been prograding seaward over the last few decades while much of the rest of the Louisiana coast is experiencing high erosion rates. The source of sediment is the Atchafalaya River, which has been delivering sediment to the coastal ocean since the 1940s. Researchers have suggested that the repeated passage of cold fronts during winter and early spring plays an important role in delivering sediment to the coast. A sediment-transport study on the Atchafalaya coast was conducted between October 1997 and March 2001, which included several field experiments in early March, the period of high discharge from the Atchafalaya and frequent cold-front activity. A combination of shipboard profiling and time-series measurements from a bottom tripod and array of wave sensors on the inner shelf has resulted in a data set that illustrates the mechanism of onshore transport. For a cold-front passage sampled in 2001, during pre-front conditions, sediment is resuspended and mixed throughout the water column, with transport rates onshore and to the west of 53 and 184 g s−1 m−1, respectively. Post-front conditions also result in onshore transport due to onshore flow (upwelling) in the lower meter of the water column and formation of a high-concentration bottom layer. Post-front onshore transport rates are 32 g s−1 m−1 and most of the transport occurs in the bottom meter of the water column. The repeated cycling of cold-front passages leads to a positive feedback with transport onshore during both pre- and post-front conditions, and effective attenuation of wave energy over the muddy inner shelf inhibits erosion at the coast. Thus, the chenier-plain coast is experiencing high progradation rates (up to 29 m yr−1), while most of the Gulf coast is eroding.  相似文献   

19.
Soda lakes and pans represent saline ecosystems with unique chemical composition, occurring on all continents. The purpose of this study was to identify and characterise the main environmental gradients and trophic state that prevail in the soda pans (n = 84) of the Carpathian Basin in Central Europe. Underwater light conditions, dissolved organic matter, phosphorus and chlorophyll a were investigated in 84 pans during 2009–2010. Besides, water temperature was measured hourly with an automatic sensor throughout one year in a selected pan. The pans were very shallow (median depth: 15 cm), and their extremely high turbidity (Secchi depth median: 3 cm, min: 0.5 cm) was caused by high concentrations of inorganic suspended solids (median: 0.4 g L−1, max: 16 g L−1), which was the dominant (>50%) contributing factor to the vertical attenuation coefficient in 67 pans (80%). All pans were polyhumic (median DOC: 47 mg L−1), and total phosphorus concentration was also extremely high (median: 2 mg L−1, max: 32 mg L−1). The daily water temperature maximum (44 °C) and fluctuation maximum (28 °C) were extremely high during summertime. The combination of environmental boundaries: shallowness, daily water temperature fluctuation, intermittent hydroperiod, high turbidity, polyhumic organic carbon concentration, high alkalinity and hypertrophy represent a unique extreme aquatic ecosystem.  相似文献   

20.
《Marine pollution bulletin》2014,78(1-2):274-281
Nine macroalgal blooms were studied in five coastal lagoons of the SE Gulf of California. The nutrient loads from point and diffuse sources were estimated in the proximity of the macroalgal blooms. Chlorophyll a and macroalgal biomass were measured during the dry, rainy and cold seasons. Shrimp farms were the main point source of nitrogen and phosphorus loads for the lagoons. High biomasses were found during the dry season for phytoplankton at site 6 (791.7 ± 34.6 mg m−2) and during the rainy season for macroalgae at site 4 (296.0 ± 82.4 g m−2). Depending on the season, the phytoplankton biomass ranged between 40.0 and 791.7 mg m−2 and the macroalgal biomass between 1 and 296.0 g m−2. The bulk biomass (phytoplankton + macroalgal) displayed the same tendency as the nutrient loads entering the coastal lagoons. Phytoplankton and macroalgal biomass presented a significant correlation with the atomic N:P ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号