首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies investigating the effects of human activities on the functional organization of macroinvertebrate communities in tropical streams and rivers are very limited, despite these areas witnessing the greatest loss of natural forests globally. We investigated changes in taxon richness, numerical abundance and biomass of macroinvertebrate functional feeding groups (FFGs) in streams draining different land-use types in the Sosiani-Kipkaren River in western Kenya. Twenty-one sites in river reaches categorized as forested, mixed, urban or agricultural were sampled during the dry and wet seasons. Collected macroinvertebrates were identified to the lowest taxon possible (mainly genus) and classified into five major FFGs; collector-gatherers, collector-filterers, scrapers, predators and shredders. There were significant (p < 0.05) spatial variation in habitat quality, organic matter standing stocks, total suspended solids, electrical conductivity, dissolved oxygen, temperature and nutrient concentrations across land-uses, with forested sites recording lowest values in mean water temperature, electrical conductivity and nutrients while recording highest levels in dissolved oxygen concentrations. Responses in macroinvertebrates to changes in land-use varied with richness, abundance and biomass showing differences within FFGs. Biomass-based metrics responded more strongly to change in land-use while taxon richness was the least predictive, indicating replacement of taxa within FFGs across land-use types. Higher shredder abundance, biomass and richness were recorded in forested streams which were cooler with protected riparian areas and high biomass of coarse particulate organic matter. Collector-gatherers dominated agricultural and urban streams owing to an abundance of particulate organic matter and nutrients, while scrapers responded positively to increased nutrient levels and open canopy in mixed and agricultural streams where primary production and algal biomass was likely increased. Overall, this study provides further evidence of the effects of agricultural and urban land-uses on tropical streams and rivers and contributes to the use of macroinvertebrate FFGs as indicators of ecological health.  相似文献   

2.
The use of multimetric indices as tools for assessing aquatic ecosystem health in most of the developing countries such as Togo is still lacking. To fill this gap, we developed a macroinvertebrates-based multimetric index for the Zio river basin of Togo. Forty-two sites were assessed for the development and the validation of the Multimetric Index of Zio River Basin (MMIZB). Thirty-nine candidate metrics belonging to four categories (composition metrics, functional feeding metrics, diversity metrics and tolerance measure metrics) were evaluated. After comprehensive multiple selection procedure, six core metrics were retained to provide the final MMIZB. The results showed that the MMIZB responded to a set of organic pollution (chemical oxygen demand, ammonium, total suspended solid) and hydromorphological alterations, which corresponded to a set of gradients of human pressures affecting the ecological integrity of Zio river basin water bodies (r = 0.78, p < 0.001). The final macroinvertebrate index well distinguished the reference sites and impaired sites of a validation data set (p < 0.001) and showed a significant relationship between water and habitat quality based on Prati’s index (r = 0.73, p < 0.001) and Multimetric Macroinvertebrates Index of Vietnam (MMI_Vietnam) (r = 0.88, p < 0.001). This work underlines the relevance of the MMIZB as an effective tool for biological monitoring and decision making in water management of Zio river basin.  相似文献   

3.
REID  H.E.  BRIERLEY  G.J.  BOOTHROYD  I.K.G. 《国际泥沙研究》2010,25(3):203-220
The role of geomorphic structure, referred to as physical heterogeneity, and its influence upon the colonization of habitat by macroinvertebrates was analysed in the peri-urban, Twin Streams Catchment, in West Auckland, New Zealand. Using a cross-scalar approach, 4 riffle-run assemblages were analysed in each of 2 River Styles (a confined, low sinuosity, gravel bed river and a partly confined, low sinuosity, bedrock, cobble, and gravel bed river). Each of these 8 locations comprised 2 distinct sampling areas; the upstream zone had a more heterogeneous river bed with a high diversity of physical features and flow, whilst the downstream area had a more homogeneous structure. Microhabitat features sampled at each site included streambed material, bank margins, fine grained organic debris, wood, and boulders. Habitat mosaics and their associated macroinvertebrate relationships followed a semi-predictable but interrupted pattern, supporting the view that river systems are a patchy discontinuum. Homogeneous zones were more frequently characterised by higher proportions of Trichoptera than heterogeneous zones, whilst heterogeneous zones were frequently characterised by Plecoptera and Ephemeroptera. Diversity was maximised when the species pools from heterogeneous and homogeneous sites were combined for any given site. Functional habitats influenced macroinvertebrate assemblages in non-linear and complex ways. Wood and organic debris habitats were associated with high diversity, abundance, and sensitive species whereas streambed habitat was usually associated with low diversity. A diverse range of physical zones that approximates the 'natural range of behaviour' for the given type of stream was considered to provide a more effective platform for rehabilitation planning than emphasising heterogeneity of physical structure in its own right.  相似文献   

4.
We examined the spatial structure of macroinvertebrate assemblages in surface-flowing waters of a glacially-influenced floodplain. The floodplain main-channel responded longitudinally to changes in hydrology with evident coarse-scale zones of upwelling and downwelling; the lower floodplain main channel fell dry in late winter. Physico-chemical attributes differed among tributaries and the main channel. The main channel had lower values of conductivity, alkalinity and nitrate–N than tributaries, with right-side (east-facing) tributaries having the highest values. Left-side (west-facing) tributaries flowing over an exposed rock-face had warmer water temperatures than the main channel and right-side tributaries. The biomass of benthic organic matter and periphyton was highest in right-side tributaries, followed by main channel sites then left-side tributaries. Similarly, macroinvertebrate density and richness were higher in right-side tributaries, intermediate in main channel sites, and lowest in left-side tributaries. Macroinvertebrate assemblages clearly differed between main channel sites, right-side tributaries, and left side tributaries based on an NMDS analysis. Minor differences were observed among main channel sites, although most upstream sites showed some structural differences from downstream sites. Ephemeropterans and plecopterans were most common in main channel sites and right-side tributaries, whereas chironomids and trichopterans also were common in right-side tributaries. Although the main channel changed longitudinally in physico-chemical characteristics, no real patterns of zonation were evident in macroinvertebrate assemblages. Coarse spatial patterns in macroinvertebrate assemblages in the floodplain were reflected in the physico-chemical differences between the main channel and tributaries, and between left-side and right-side tributaries. We conclude that coarse-scale floodplain properties enhance the overall diversity of lotic macroinvertebrates. Consequently, floodplain alterations that reduce surface water heterogeneity/connectivity limits the potential macroinvertebrate diversity of floodplains.  相似文献   

5.
In two survey phases (2003 and 2008) organic, nutrient and salt contamination parameters have been investigated in the lower Werra in order to estimate the importance of these different kinds of pollution for the quality component of macroinvertebrates according to the European Water Framework Directive. The chemical and biological investigations have been carried out comparing a “reference” section without salt contamination with the salt contaminated section due to the potash mining industry from Vacha to Hannoversch Münden close to the mouth of the Werra. The results show that the drastic differences between the macroinvertebrate assemblages of the Werra upstream and downstream the salt contaminated sections are clearly caused by the salt load. The other kinds of chemical impacts are not responsible for the observed fundamental change within the composition of the benthic invertebrate assemblage. General degradation of stream morphology, indicated by macroinvertebrates, shows a good ecological status for the non-salt-contaminated part of the river and a bad status for the salt contaminated sites of the lower Werra.  相似文献   

6.
In order to assess and compare the ecological impacts of channelization and shallow lowland reservoirs, macroinvertebrate communities of a lowland metapotamal river below reservoirs with epilimnial release were studied. The study was carried out in the Dyje River (Czech Republic) at five sites located from 1.5 to 22.5 km downstream of the reservoir outfall. The five sites differed in the degree of channel modification from natural muddy banks to riprap regulation. Seven samples were collected during the years 1998 and 1999 at each site using a semiquantitative method. The data were processed using multivariate analyses and methods for assessing the ecological and functional structure of communities. Altogether, 261 species of benthic macroinvertebrates were recorded including several rare and threatened taxa. Based on the results of principal component analysis (PCA), most of the variability within the species data (the first PCA axis) was explained by the degree of channel modification, from natural muddy banks with aquatic vegetation to a man-made riprap. The second axis was strongly correlated with current velocity. The sites differed in species richness, total abundances, proportion of individual functional feeding groups, pattern of the distribution of the current preference groups, and values of several biotic indexes, all of which also corresponded to the degree of channel modification. Thus, the morphological man-made modifications of the river channel were found to be the main factor affecting lowland river macroinvertebrates and their biodiversity. Our results suggest that the biggest threat to benthic macroinvertebrate diversity of lowland rivers comes from channelization. The impact of reservoirs can be completely overwhelmed by the impact of channelization, especially when muddy banks with aquatic vegetation present a substantial part of habitat diversity and significantly contribute to the total species pool.  相似文献   

7.
8.
Macroinvertebrates in the bed sediment of the Yellow River   总被引:1,自引:1,他引:0  
Extensive agricultural,industrial and urban development in the Yellow River,China,have modified the sediment-water balance,flow and inundation regimes,longitudinal connectivity,integrity of riparian vegetation,and water quality.Macroinvertebrate assemblages in the bed sediment of main channel and major reservoirs of the Yellow River are described in detail for the first time.A total of 74 taxa comprising 17 taxa of oligochaetes,48 taxa of aquatic insects,5 taxa of molluscs,and 4 taxa of other animals were recorded.A range of feeding guilds were represented,including, collector-gatherers(32 taxa),predators(17 taxa),scrapers(16 taxa),shredders(6 taxa)and collector-filterers(2 taxa).Both the mean density and biomass of macroinvertebrates were significantly higher in sites located in the artificial reservoirs compared with the main river channel. Assemblages varied spatially;Oligochaetes dominated assemblages in upper reaches,insects dominated in middle reaches and other animals(e.g.Crustacea)dominated in lower reaches. Collector-gatherers were dominant throughout the entire river.Classification analysis identified five site-groups on the basis of macroinvertebrate presence/absence:downstream of reservoirs;vegetated sites;reservoir sites;polluted sites,and;lower-reach sites.Lower macroinvertebrate richness,density and biomass,compared with other similar large rivers,were attributed to modification of the sediment-water balance and associated disturbance of benthic habitats.Pollution,stability of sediment and sediment concentration combined to influence the distribution of macroinvertebrates.This knowledge will substantially benefit the recent focus on the health and environmental water requirements of the Yellow River.  相似文献   

9.
Population growth and economic development have resulted in increased water demands, threatening freshwater resources. In riverine ecosystems, continuous monitoring of the river quality is needed to follow up on their ecological condition in the light of water pollution and habitat degradation. However, in many parts of the world, such monitoring is lacking, and ecological indicators have not been defined. In this study, we assessed seasonal variation in benthic macroinvertebrate assemblages in a tropical river catchment in northeastern Tanzania, which currently experiencing an increase in agricultural activities. We examined the potential of in-stream environmental variables and land-use patterns to predict the river macroinvertebrate assemblages, and also identified indicator taxa linked to specific water quality conditions. Macroinvertebrate abundance, taxon richness and TARISS (Tanzania River Scoring System) score were higher in the dry season most likely due to higher surface runoff from agricultural land and poorer water quality in the wet season. In the wet season macro invertebrates seem to be limited by chlorophyll-a, oxygen and phosphorous while in the dry season, when water flow is lower, nitrogen and turbidity become important. Substrate composition was important in both seasons. Given the fact that different selective filters limit macroinvertebrate assemblages in both seasons, a complete picture of water quality can only be established by monitoring in both seasons. Riparian buffer zones may help to alleviate some of the observed negative effects of agricultural activities on the river system in the wet season while limiting irrigation return flows may increase water quality in the dry season.  相似文献   

10.
Lotic ecosystems are highly affected by land use changes such as afforestation of natural areas for management or commercial purposes. The aim of this study was to analyze the effect of pine plantations on benthic invertebrate communities in mountain grassland streams. Additionally, we assessed if the hydrological period modifies the effect of afforestation on stream invertebrates. Three headwater streams draining grasslands (reference streams) and three draining plantations of Pinus elliottii were selected in a mountain watershed of Córdoba province (Argentina). Hydrologic and physicochemical variables were registered and benthic invertebrate samples were collected in each stream at two different hydrological periods. Total invertebrate abundance, richness and diversity were reduced in afforested streams as well as the number of indicator taxa. In addition, invertebrate functional structure (i.e. taxonomic richness and total and relative abundance of functional feeding groups, FFG) showed differences between streams with different riparian vegetation and between hydrological periods. Total abundance of all FFGs was lower in afforested streams and scrapers’ relative abundance was higher in grassland streams at the low water period. In addition, in most FFGs richness was diminished in afforested streams. Changes in light intensity, hydrology and coarse organic matter inputs produced by afforestation alter fluvial habitats and consequently the composition and trophic structure of invertebrate communities in grassland streams of Córdoba mountains.  相似文献   

11.
In this research we evaluate the effects of the method used for estimating the potential surface available for benthic macroinvertebrates in macrophyte and unvegetated habitats on several metrics and habitat preference of aquatic macroinvertebrates in the upper catchment of the Henares River (Guadalajara, Central Spain). Three sampling sites were selected: a well-preserved stream (site A), a stream with no wood riparian vegetation (site B), and a straightened and deforested reach (site C). Two habitats were selected in each site: unvegetated habitat (i.e., substrata without macrophytes) and macrophyte habitat (i.e., substrata covered by macrophytes). In each habitat, six macroinvertebrate samples (including all macrophytes or mineral particles) were collected using a Hess sampler. Diversity and density of major families were referred to the surface of the Hess sampler (=Hess surface method) and to the actual surface of either mineral particles or macrophytes (=actual surface method). In general, for the actual surface method, biomass, richness, dominance, and diversity metrics were higher in the mineral habitat than in the macrophyte habitat. This trend was different for the Hess surface method. In general, densities turned out to be higher in the unvegetated habitat than in the macrophyte habitat when using the actual surface method, but the reverse occurred when using the Hess surface method. This fact is relevant for river biomonitoring, especially when reaches with different dominant substrates (macrophytes vs mineral) are compared using just one of the methods. It is concluded that the macrobenthic metrics and density values are influenced by the method used to estimate the potential available surface for aquatic macroinvertebrates.  相似文献   

12.
湖滨带是湖泊与陆地生态系统间非常重要的生态过渡带,能够保障周围生态系统结构的完整以及功能的正常发挥.随着湖滨带被持续开发与利用,人为干扰对湖滨带的影响逐渐增强.大型底栖动物是淡水生态系统的重要生物类群之一,也是物质循环和能量流动的主要环节,起着承上启下的关键作用.为了解湖滨带开发利用对大型底栖动物群落结构的影响,2020年8月对洪泽湖湖滨带49个样点的大型底栖动物进行调查.共采集到大型底栖动物49种,隶属3门7纲17目26科44属,各样点大型底栖动物的密度差别较大,介于6.67~1386.67 ind./m2之间,整体上呈现西北高,东南低的趋势.相似性分析结果表明,河口型湖滨带和大堤型湖滨带与其他类型湖滨带差异显著,而围网型、圈圩型和光滩型3种湖滨带类型之间的大型底栖动物群落差异均不显著.相似性百分比分析结果表明,腹足纲的环棱螺属是造成不同湖滨带类型差异的主要物种.典范对应分析结果表明,悬浮物(SS)、溶解态总氮、pH、透明度(SD)、浊度、水生植物盖度和扰动指数对大型底栖动物群落有显著影响.考虑不同湖滨带宽度的开发利用情况,发现湖滨带开发利用200 m范围内,物种-环境解释率最高,说明200 m湖滨带范围内的开发利用情况对大型底栖动物的影响最大,对湖滨带200 m范围内的开发利用应该加强管控.结构方程模型表明湖滨带开发利用主要通过影响水生植物盖度、总氮、硝态氮、叶绿素a、SS、SD等进而影响大型底栖动物,且围网也会直接影响大型底栖动物群落结构.  相似文献   

13.
Understanding spatio-temporal suspended sediment dynamics is more important in large watersheds due to the decisive role of local source apportionment in sediment transport and yield. The Talar River with a large mountainous watershed in northern Iran, which plays a vital role in water supply for agriculture and drinking, recently has faced quality degradation. The current study explores the relative contribution of suspended sediment sources using geochemical tracers and fingerprinting techniqu...  相似文献   

14.
富营养深水水库底栖动物群落与浮游生物相关性分析   总被引:1,自引:0,他引:1  
底栖动物和浮游生物通过食物网发生复杂的交互作用,是水库生态系统物质循环的重要组分.南湾水库和汤浦水库均为存在富营养化现象的深水水库,具有较长时间的水温分层期.本文选取这两座供水水库为对象,比较其水体营养状态、底栖动物的群落结构、现存量和多样性.通过群落状态指数(IICS)定量评估底栖动物群落状态,并采用PLS模型、Spearman秩相关以及回归图探讨浮游生物各类群密度与IICS的关系.研究结果显示,南湾水库富营养程度高于汤浦水库,寡毛类在南湾水库占据优势地位,摇蚊类在汤浦水库数量上占优.南湾水库以收集者为主,其数量占比远高于汤浦水库.深水水库通常存在较强的热分层,富营养化会加重水库底部的缺氧或厌氧状态,导致底栖动物遭受周期性的缺氧扰动,影响种类多样性和现存量,改变浮游生物类群与底栖动物群落的相关性,因此底栖动物群落与浮游生物的相关性能够提供判断水库富营养化程度的重要信号,进而为水库管理方提供更多有价值的参考信息.  相似文献   

15.
鲍思敏  张凯  丁城志  陶捐  王军 《湖泊科学》2024,36(2):536-547
自然流淌的支流在维持建坝河流水生生物多样性中起着重要作用。补远江是澜沧江下游的重要一级支流,保持了较为天然的河流状态,人类活动干扰相对较少,是流域土著鱼类保护区和水生生物重要栖息地。在澜沧江流域水电开发的背景下,掌握补远江大型底栖动物群落结构的时空分布及其影响因素,对澜沧江乃至西南河流的水生生物多样性保护和恢复具有重要参考意义。于2019年4月(旱季)和2019年10月(雨季)对补远江的大型底栖动物进行了详细调查,共检出大型底栖动物150个分类单元,隶属于5门7纲68科,其中水生昆虫121种,软体动物20种,蛭类3种,寡毛类2种,甲壳类2种,涡虫、线虫各1种。毛翅目和蜉蝣目为全流域优势类群。补远江底栖动物密度和生物量在旱季和雨季均表现为上游大于中下游,物种丰富度和Shannon-Wiener多样性指数在雨季显著高于旱季。功能摄食类群中,滤食者(41.09%)和收集者(31.81%)占绝对优势,其次为刮食者(11.00%)、捕食者(11.21%),撕食者(4.89%)较少。Mantel检验分析表明,河宽(RW)、硝态氮(NO3--N)、化学需氧量(CODMn)是影响补远江大型底栖动物群落结构的主要环境因子;不同功能摄食类群所受到的环境影响因素不同。生物指数(BI)和生物监测工作组记分(BMWP)系统评价显示,补远江大部分样点处于良好及以上水平,少数样点处于中等及以下水平,总体水生态状况良好。  相似文献   

16.
大型底栖动物群落结构与水环境因子具有较强的响应关系,为了量化分析大型底栖动物群落水环境因子适宜状态以及响应关系,在太子河进行3次流域水生态调查,共获得136个站位的生态数据,通过筛选得到水环境驱动因子,并利用加权平均回归分析和临界点指示类群分析的方法,探究大型底栖动物群落物种、不同多样性水平以及功能摄食类群水环境驱动因子的最适值和阈值.结果显示,显著影响大型底栖动物群落结构的水环境因子是溶解氧、电导率、总氮.大型底栖动物敏感种的溶解氧最适值较高,耐污种较低;敏感种的电导率和总氮最适值较低,耐污种较高;大型底栖动物群落多样性水平Shannon-Wiener指数(0-1]区间的溶解氧最适值最低,(3-4]区间的溶解氧最适值最高,各Shannon-Wiener指数区间电导率和总氮最适值排序为:(0-1]区间(1-2]区间(2-3]区间(3-4]区间;在5个功能摄食类群中溶解氧最适值最高和最低分别为撕食者和直接收集者,电导率最适值最高和最低分别为直接收集者和过滤收集者,总氮最适值最高和最低分别为直接收集者和刮食者.大型底栖动物敏感种的溶解氧阈值高于耐污种类群与其他物种,而敏感种的电导率和总氮阈值低于耐污种和其他物种;大型底栖动物群落多样性水平Shannon-Wiener指数(0-1]区间与溶解氧阈值呈负响应关系,而与电导率和总氮阈值呈正响应关系,(1-2]区间、(2-3]区间、(3-4]区间与溶解氧阈值呈正响应关系,而与电导率和总氮阈值呈负响应关系;溶解氧指示的大型底栖动物功能摄食类群为撕食者,且呈正响应关系,而电导率和总氮指示的功能摄食类群都包括过滤收集者、刮食者、撕食者,且呈负响应关系,其中刮食者的电导率和总氮阈值均最高.研究表明,通过分析大型底栖动物群落水环境因子的最适值和阈值,能以数据的形式量化反映大型底栖动物群落与河流水环境因子的响应关系,对河流生态环境的保护和修复具有重要的指导意义.  相似文献   

17.
The community and trophic structure of benthic macroinvertebrates were studied in different types of habitats in the karstic Plitvice Lake system located in the NW Dinarid mountains (Croatia). The spatial distribution of functional macroconsumer groups shows that longitudinal community functional organization doesn't correspond with the River Continuum Concept (RCC) hypothesis. Collector guilds were the most abundant functional feeding groups at all the sites analyzed. The domination of shredders was found only in habitats in the source areas of the supply streams. The disturbed longitudinal community functional organization is caused by a discontinuum in the gradient of physical factors which is a result of the geomorphological origin of travertine barriers along the hydrosystem.  相似文献   

18.
巢湖流域不同水系大型底栖动物群落结构及影响因素   总被引:1,自引:1,他引:1  
2013年4月对巢湖流域8个水系147个样点的大型底栖动物进行调查,分析其群落结构及与环境因子的关系.共采集到大型底栖动物213种,隶属于3门7纲22目76科177属.8个水系大型底栖动物物种数差异较大,在杭埠河发现172种,而在十五里河仅发现10种.大型底栖动物密度组成呈现出显著的空间差异.南淝河和十五里河的寡毛纲相对密度均超过96%,派河的寡毛纲和摇蚊幼虫的相对密度分别为47.8%和41.1%.裕溪河、白石天河、柘皋河和杭埠河的腹足纲相对密度最大.杭埠河的水生昆虫相对密度达30.6%,是水生昆虫相对密度最大的水系.相似性分析结果表明,8个水系特征种差异明显,霍甫水丝蚓(Limnodrilus hoffmeisteri)是十五里河和派河的最主要优势种,而铜锈环棱螺(Bellamya aeruginosa)是兆河、裕溪河、杭埠河、白石天河和柘皋河的最主要优势种,铜锈环棱螺和霍甫水丝蚓是南淝河贡献率较大的两种优势种.生物多样性结果表明,Shannon-Wiener、Simpson及Margalef指数在8个水系间具有显著差异,Pielou指数在8个水系间差异不明显.典范对应分析结果表明,影响大型底栖动物群落结构的主要因素为水体营养状态和底质异质性.高营养盐浓度导致南淝河、派河和十五里河的耐污种密度高、生物多样性低,而相对较高的底质异质性维持了杭埠河大型底栖动物的高多样性和敏感型物种的生存.  相似文献   

19.
Biological and hydromorphological integrity of five reaches of the small urban stream were assessed. Because macroinvertebrate communities respond to both organic pollution and habitat change, impacts of both measures can be hardly separated. In our study on the urbanized small stream, an impact of organic pollution was excluded as all five sampling sites were assessed as moderately polluted. On the other hand differences in morphological degradation of banks and channel of selected sites enabled us to relate hydromorphological stress and biotic metrics and taxa. Physical habitat quality was assessed using River habitat survey (RHS) methodology. A downstream-upstream gradient of physical habitat degradation was observed and related to the macroinvertebrate community characteristics. Similarity analyses and biotic metrics were calculated and correlated with results of the RHS analyses. Composition of the macroinvertebrate assemblages did not follow the longitudinal pattern of habitat modification observed by the RHS analysis. However, some metrics corresponded well. Percentage of detritivores, percentage of Caenis luctuosa, number of individuals, percentage of EPT individuals were best predictors of changes in the physical habitat quality. However, the metric percentage of EPT individuals was negatively correlated to the habitat degradation, what is in contradiction with results from studies of other authors.  相似文献   

20.
The European Water Framework Directive requires that member states assess all their surface waters based on a number of biological elements, including macroinvertebrates. Since 1989, the Flemish Environment Agency has been using the Belgian Biotic Index for assessing river water quality based on macroinvertebrates. Throughout the years, the Belgian Biotic Index has proven to be a reliable and robust method providing a good indication of general degradation of river water and habitat quality. Since the Belgian Biotic Index does not meet all the requirements of the Water Framework Directive, a new index, the Multimetric Macroinvertebrate Index Flanders (MMIF) for evaluating rivers and lakes was developed and tested. This index was developed in order to provide a general assessment of ecological deterioration caused by any kind of stressor, such as water pollution and habitat quality degradation. The MMIF is based on macroinvertebrate samples that are taken using the same sampling and identification procedure as the Belgian Biotic Index. The index calculation is a type-specific multimetric system based on five equally weighted metrics, which are taxa richness, number of Ephemeroptera, Plecoptera and Trichoptera taxa, number of other sensitive taxa, the Shannon-Wiener diversity index and the mean tolerance score. The final index value is expressed as an Ecological Quality Ratio ranging from zero for very bad ecological quality to one for very good ecological quality. The MMIF correlates positively with dissolved oxygen and negatively with Kjeldahl nitrogen, total nitrogen, ammonium, nitrite, total phosphorous, orthophosphate and biochemical and chemical oxygen demand. This new index is now being used by the Flemish Environment Agency as a standard method to report about the status of macroinvertebrates in rivers and lakes in Flanders within the context of the European Water Framework Directive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号