首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several models explaining species composition of aquatic bryophytes are available for specific regions. However, a more general, conceptual model applicable to a broader range of regions is lacking.We present a conceptual model ranking environmental factors determining submerged bryophyte communities in small mountain streams. It was tested on a dataset of 54 stream sections after removing the effect of stream size and altitude. Species responses were modeled with pH as predictor variable based on 97 stream sites covering six mountain regions all over Germany. Multiple regressions revealed the importance of primary growth factors (light, Ep(CO2)) and substrate for the total submerged bryophyte coverage.The known distinction of hard- and softwater bryoflora was clearly supported. The floristic composition of headwaters was predominantly determined by the bicarbonate/ionic strength complex. Species response to pH values supported this result and thus our conceptual model. The primary growth resources light, Ep(CO2) and availability of coarse streambed material explained one third (Radjusted2 = 0.34) of total submerged bryophyte cover. Disturbances, predominantly spates, reduce biomass but do not affect the basic floristic structure.In conclusion, conceptual models and monitoring methods focusing on aquatic bryophytes need to clearly distinguish “aquatic” from “submersed by chance”. All “aquatic bryophytes” found in Germany can also occur at least temporarily at non-submerged sites. Therefore, a distinction between primary growth factors and additional resources is recommended to disentangle factors determining aquatic bryophyte communities.  相似文献   

2.
3.
4.
Methods to assess the physical habitat provide important tools for many aspects of river management. Hydraulic units (defined as a homogeneous patch of flow type and substrate) were described in mountain streams of Central Argentina and the distribution of macrozoobenthos in these habitat units was analyzed. Four streams from the upper Carcarañá River Basin (Córdoba, Argentina) were sampled in two hydrological periods. Hydraulic units (as substrate and flow type), current velocity, depth, macrophytes and macroalgae were assessed. Three benthic samples were taken in each hydraulic unit. A total of 12 hydraulic units were registered, which varied seasonally in their proportional abundance. The highest values of taxonomic richness, total abundance, diversity and evenness were found in the low-water period. The most heterogeneous hydraulic units (characterized by substrate of diverse grain size) presented the highest richness, diversity and evenness, whereas the highest total abundance was observed in hydraulic units with homogeneous substrate, such as bedrock or gravel sand. Canonical correspondence analysis grouped samples and taxa mainly in relation to the hydraulic units, and temporal variation in macroinvertebrate assemblages was observed. We found that the interaction between hydrological and geomorphological conditions affected benthic assemblages and that their organization is important at a mesoscale. Therefore, hydraulic units may be considered important tools in assessing stream integrity in lotic systems of central Argentina.  相似文献   

5.
Elevational gradients are powerful ‘natural laboratory' for testing the responses of microbes to geophysical influences. Microbial communities are normally composed of a few abundant and many rare taxa. Abundant and rare taxa play different ecological roles in kinds of environments, but how their diversity and composition patterns response to elevation gradients is still poorly elucidated. In this study, we investigated the elevational patterns of abundant and rare bacterial diversity and composition in a mountain stream from 712 to 3435 m at Gangrigabu Mountain on the Tibetan Plateau, China. Our results revealed abundant and rare bacteria had similar decreasing elevation trend of alpha diversity, and both of them showed a significant elevational distance-decay relationship. However, the turnover rate of the elevational distance-decay of rare bacteria was higher than that of abundant bacteria. The species-abundance distribution patterns of rare taxonomic composition were associated with the elevational gradient, while most of abundant bacterial clades did not display any relationships with elevation.Our results suggested that rare bacteria were more sensitive to changes in elevation gradient.  相似文献   

6.
Vegetation plays a critical role in modifying inundation and flow patterns in salt marshes. In this study, the effects of vegetation are derived and implemented in a high‐resolution, subgrid model recently developed for simulating salt marsh hydrodynamics. Vegetation‐induced drag forces are taken into account as momentum sink terms. The model is then applied to simulate the flooding and draining processes in a meso‐tidal salt marsh, both with and without vegetation effects. Marsh inundation and flow patterns are significantly changed with the presence of vegetation. A smaller area of inundation occurs when vegetation is considered. Tides propagate both on the platform and through the channels when vegetation is absent, whereas flows concentrate mainly in channels when vegetation is present. Local inundation on vegetated platforms is caused mainly by water flux spilled from nearby channels, with a flow direction perpendicular to the channel edges, whereas inundation on bare platforms has contributions from both local spilled‐over water flux and remote advection from adjacent platforms. The flooding characteristics predicted by the model showed a significant difference between higher marsh and lower marsh, which is consistent with the wetlands classification by the National Wetlands Inventory (NWI). The flooding characteristics and spatial distribution of hydroperiod are also highly correlated with the vegetation zonation patterns observed in Google Earth imagery. Regarding the strong interaction between flow, vegetation and geomorphology, the conclusion highlights the importance of including vegetation in the modeling of salt marsh dynamics. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
We assessed water quality using physical, chemical, and biological characteristics in 37 streams between Puerto Maldonado and Cusco in Peru. Study sites ranged from ∼200 to 4000 m in elevation, with streams selected as pairs (control/natural vs. human impacted) along this gradient. In general, temperature decreased (R2 = 0.82) and other parameters increased [dissolved oxygen (R2 = 0.19), conductivity (R2 = 0.17), pH (R2 = 0.37)] with elevation. Macroinvertebrates were hand collected by professional entomologists and using leaf packs implemented by conservation workers. The professionals identified 213 unique taxa from the hand collections, with 80 species collected only one time. Data from control streams showed that as elevation increased, total richness (p = 0.008) and EPT richness (p = 0.050) decreased whereas Diptera richness increased (p = 0.002). NMS ordination indicated significant differences in macroinvertebrate assemblages when control streams from low and high elevations were contrasted. Hand collections also revealed significant differences between control and impact streams for total richness, EPT richness and % Diptera, but not for % EPT, % EPT richness, or % Diptera richness. The majority of the deployed leaf packs were successfully retrieved and contained many macroinvertebrates (Avg. = 141 individuals per pack). There were 98 unique taxa (family level or higher) identified from the leaf packs by the trained conservation workers. Fourteen of 15 macroinvertebrate community metrics (at the family level) were able to detect significant differences between control and impact sites. All of the family level metrics responded similarly across the elevation gradient except total richness, EPT richness, EPT count, and % Hydropsychids. Both the Costa Rica and the Virginia Save Our Stream Indexes were able to differentiate control from impacted streams using leaf pack data. Although the diversity of macroinvertebrates was higher for hand collections relative to leaf packs (due to greater habitats sampled and higher taxonomic resolution), leaf pack samples were better able to distinguish control from impacted streams. Specifically, leaf packs were able to discern impacts in streams at low elevation better than those at high elevation. Generally, macroinvertebrates indicated impact from urbanization to be worse than impacts from other human activities (i.e., gold mining and agriculture). Overall, hand collections will serve as an important reference of species diversity going forward while leaf packs processed by trained conservation workers are a viable method to monitor stream water quality in Peru and perhaps elsewhere.  相似文献   

8.
Stream surface albedo plays a key role in the energy balance of rivers and streams that are exposed to direct solar radiation. Most physically based analyses and models have incorporated a constant stream albedo between 0.03 and 0.10, based primarily on measurements from low‐gradient streams with low suspended sediment concentrations. However, albedo should vary with solar elevation angle, suspended sediment concentration, aeration, and fraction of direct versus diffuse radiation. The objective of this study was to quantify the dependence of albedo of mountain streams on the controlling factors and to develop a predictive model for use in physically based analysis and modelling of stream temperature, especially for future climate and land‐use scenarios. Stream surface albedo was measured at nine sites with a variety of gradients and suspended sediment characteristics in the southern Coast Mountains of British Columbia, Canada. As expected, albedo of low‐gradient, non‐white water (flatwater) streams increased with solar elevation angle, suspended sediment concentration, and proportion of diffuse to direct solar radiation, ranging between 0.025 during cloudy periods over clear water to 0.25 for turbid water at elevation angles of less than 20°. Albedo was enhanced in steep reaches or at channel steps and cascades where flow was visibly aerated, with a range of 0.09 to 0.33. In clear weather, albedo exhibited notable diurnal variability at flatwater sampling sites. For example, during late summer, surface albedo typically fluctuated between 0.08 and 0.15 on a daily basis at a flatwater site on the highly turbid, glacier‐fed Lillooet River. Multiple regression models explained approximately 60% and 40% of the variance under cross validation for flatwater and white water data subsets, respectively, with corresponding root mean square errors of approximately 0.02 and 0.06.  相似文献   

9.
四川及邻区抗倒塌地震区划图编制   总被引:1,自引:0,他引:1       下载免费PDF全文
通过数字试验,分析了不同编图方法对地震区划结果的影响.基于四川及邻区的地震地质环境、地震活动特征,K2值特征,△Tg分布特征,考虑到地震区划图的继承性和连续性以及与我国现行抗震设计规范的衔接,提出了抗倒塌地震区划图编制的编制原则和方法,编制了四川及邻区的抗倒塌地震区划图.  相似文献   

10.
建立了考虑淹没频率和淹没水深等生境因子的水动力-生境适宜度数学模型,基于三峡水库蓄水前后的长序列水文观测数据和不同时期的河道地形资料,研究了近20年来武汉河段汉口边滩南荻(Miscanthus lutarioriparius)-芦苇(Phragmites australis)群落的适宜生境变化情况,量化了不同因素的影响.结果表明:所建立的生境数值模型能较好地模拟还原南荻-芦苇群落实际空间分布情况.与2001年前的情况相比,若维持地形不变,三峡水库蓄水后的径流过程调平、年内水位变幅减小将导致群落适宜分布带向河道方向转移,且面积减小33.24%;若保持水文条件不变,岸线利用引起的地形坡度坦化将导致群落扩张,其分布面积增加69.11%;由于后者影响占主导地位,在2种因素综合影响下,南荻-芦苇群落向低滩地蔓延的同时呈现了扩张的趋势,面积增加42.53%.进一步发现,若滩地地形变化或人工建筑位于淹没频率在5%~25%区间带内,则水文变化、地形变化2种因素会对南荻-芦苇群落生境产生迭加影响,这种迭加影响甚至会大于单因素影响之和.研究表明岸滩开发等人为干扰导致滨岸滩地改变时,可能会影响滩上植被生长条件,这值得有关部门进行岸线规划、利用和进行生态保护时重点关注.  相似文献   

11.
12.
Dirk Böhme 《Limnologica》2011,41(2):80-89
Induced by a brine discharge study for a submerse gas storage cavern project, a suitable methodology for rapid impact assessment had to be found. In this paper a simple stochastic, stationary model is described for assessment of intensity and temporal variability of chloride pollution at the regional scale of the rivershed. Chloride concentration is used as a proxy of salinity. It is assumed to be the result of deterministic process (flow-dependent) and stochastic variation (estimated for boundary conditions and tributaries by an additive error term based on PERT distribution). This approach is suited to conduct Monte Carlo simulations in order to calculate long-time means and percentiles of the prospective in-stream chloride concentration (exposure model). The biocoenoses exposed to this pollution has to be evaluated in terms of chloride tolerance. Herefore Maximum Field Distributions (MFD) of relevant species (aquatic macrophytes, macroinvertebrates, fish) were compiled and merged to Species Sensitivity Distributions (SSDs). Critical aspects of MFD data quality are discussed. Chloride model simulations representing different discharge scenarios provide exposure parameters (e.g. 90th percentile) that can be compared with SSD-derived protection levels (e.g. maximum loss of 10% of taxa) to quantify and evaluate possible adverse effects as well as potential recolonisation in case of load removal. Crosslinks to conservation issues are relevant in the selection and position of rare or protected species in the SSD. As an analysis of the German legal framework and technical guidelines revealed lack of guidance and best practices for such assessment and impact evaluation, recent experience highlights serious needs in applied research.  相似文献   

13.
Channel morphology of forested, mountain streams in glaciated landscapes is regulated by a complex suite of processes, and remains difficult to predict. Here, we analyze models of channel geometry against a comprehensive field dataset collected in two previously glaciated basins in Haida Gwaii, B.C., to explore the influence of variable hillslope–channel coupling imposed by the glacial legacy on channel form. Our objective is to better understand the relation between hillslope–channel coupling and stream character within glaciated basins. We find that the glacial legacy on landscape structure is characterized by relatively large spatial variation in hillslope–channel coupling. Spatial differences in coupling influence the frequency and magnitude of coarse sediment and woody material delivery to the channel network. Analyses using a model for channel gradient and multiple models for width and depth show that hillslope–channel coupling and high wood loading induce deviations from standard downstream predictions for all three variables in the study basins. Examination of model residuals using Boosted Regression Trees and nine additional channel variables indicates that ~10 to ~40% of residual variance can be explained by logjam variables, ~15–40% by the degree of hillslope–channel coupling, and 10–20% by proximity to slope failures. These results indicate that channel classification systems incorporating hillslope–channel coupling, and, indirectly, the catchment glacial legacy, may present a more complete understanding of mountain channels. From these results, we propose a conceptual framework which describes the linkages between landscape history, hillslope–channel coupling, and channel form. © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
The 2012–2015 drought in north-central coastal California ranks among the three most prolonged periods of below-median annual rainfall in the past 65 years. In three critical coho salmon streams, summer baseflow was less each additional dry year; streams with summer flow early in the drought had no flow for more than two months in latter years. By the third dry year, summer discharge was 1–5% of recent wet-type years, and 10–20% of the first dry year. Multiannual drought also caused increased dry channel conditions: the percentage of flowing channel reduced from 28 to 55% from the first to the third dry years among three study streams. In the first year following drought, dry-season streamflow resembled early to-mid-drought conditions, while in the second, it approached pre-drought discharge. This multiannual drought foreshadows how multi-annual drought predicted under future climate scenarios may affect critical salmonid streams later this century.  相似文献   

15.
Based on 390 benthic invertebrate samples from near-natural streams in Germany we defined eight stream type groups by Non-metric multidimensional scaling (NMS). The taxa lists were restricted to Mollusca, Ephemeroptera, Odonata, Plecoptera, Coleoptera and Trichoptera species and evaluated on presence/absence level. At genus level, streams located in the lowlands differ from streams in lower mountainous areas and the Alps, while the two latter groups were undistinguishable. At species level, a clear separation of different stream size classes is visible in the lowlands; a second gradient is related to the bottom substrate. Streams in the Alps can be distinguished from streams in lower mountainous areas at species level. Within the lower mountainous regions a size gradient is detectable, a less obvious gradient indicates catchment geology. The resulting “bottom-up” stream typology is compared to other stream typological systems in Germany.  相似文献   

16.
REID  H.E.  BRIERLEY  G.J.  BOOTHROYD  I.K.G. 《国际泥沙研究》2010,25(3):203-220
The role of geomorphic structure, referred to as physical heterogeneity, and its influence upon the colonization of habitat by macroinvertebrates was analysed in the peri-urban, Twin Streams Catchment, in West Auckland, New Zealand. Using a cross-scalar approach, 4 riffle-run assemblages were analysed in each of 2 River Styles (a confined, low sinuosity, gravel bed river and a partly confined, low sinuosity, bedrock, cobble, and gravel bed river). Each of these 8 locations comprised 2 distinct sampling areas; the upstream zone had a more heterogeneous river bed with a high diversity of physical features and flow, whilst the downstream area had a more homogeneous structure. Microhabitat features sampled at each site included streambed material, bank margins, fine grained organic debris, wood, and boulders. Habitat mosaics and their associated macroinvertebrate relationships followed a semi-predictable but interrupted pattern, supporting the view that river systems are a patchy discontinuum. Homogeneous zones were more frequently characterised by higher proportions of Trichoptera than heterogeneous zones, whilst heterogeneous zones were frequently characterised by Plecoptera and Ephemeroptera. Diversity was maximised when the species pools from heterogeneous and homogeneous sites were combined for any given site. Functional habitats influenced macroinvertebrate assemblages in non-linear and complex ways. Wood and organic debris habitats were associated with high diversity, abundance, and sensitive species whereas streambed habitat was usually associated with low diversity. A diverse range of physical zones that approximates the 'natural range of behaviour' for the given type of stream was considered to provide a more effective platform for rehabilitation planning than emphasising heterogeneity of physical structure in its own right.  相似文献   

17.
We explored distributional patterns and habitat preferences of ostracods in the Burdur province (Turkey). At 121 sites we recorded 35 taxa (22 recent, 13 sub-recent), of which 23 represent new records for the province. According to the Index of Dispersion and d-statistics, the individual species exhibited clumped distributions. Cosmopolitan species dominated (63.64%). A direct effect of regional factors (e.g., elevation) was not observed, while local factors (e.g., water temperature) best explained species distribution among habitats. Based on alpha diversity values, natural habitats (springs, ponds, creeks) were more suitable than artificial habitats (e.g., troughs, dams), suggesting that natural habitats define regional species diversity. Twenty-two of the recorded species had wider ecological ranges than previously reported. Cosmopolitan species appeared to suppress non-cosmopolitan species due to their wider ecological range.  相似文献   

18.
In bedload transport modelling, it is usually presumed that transported material is fed by the bed itself. This may not be true in some mountain streams where the bed can be very coarse and immobile for the majority of common floods, whereas a finer material, supplied by bed‐external sources, is efficiently transported during floods, with marginal morphological activities. This transport mode was introduced in an earlier paper as ‘travelling bedload’. It could be considered an extension of the washload concept of suspension, applied to bedload transport in high‐energy, heavily armoured streams. Since this fine material is poorly represented in the bed surface, standard surface‐based approaches are likely to strongly underestimate the true transport in such streams. This paper proposes a simple method to account for travelling bedload in bedload transport estimations. The method is tested on published datasets and on a typical Alpine stream, the Roize (Voreppe, France). The results, particularly on active streams that experience greater transport than expected from the grain sizes of their bed material, reinforce the necessity of accounting for the ‘travelling bedload concept’ in bedload computation. The method relevance is discussed regarding varying flood magnitudes, geomorphic responses and eventual anthropic origin of the ‘travelling bedload’ phenomena. To conclude, this paper considers how to compute bedload transport for a wide range of situations, ranging from sediment‐starved cases to the general mobile bed alluvial case, including the intermediate situation of external source supply on armoured bed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Intertidal habitats provide numerous ecosystem services, including the sequestration and storage of carbon, a topic of great recent interest owing to land‐cover transitions and climate change. Mangrove forests and seagrass meadows form a continuum of intertidal habitats, alongside unvegetated mudflats and sandbars, however, studies that consider carbon stocks across these spatially‐linked, threatened ecosystems are limited world‐wide. This paper presents the results of a field‐based carbon stock assessment of aboveground, belowground and sediment organic carbon stock to a depth of 1 m at Chek Jawa, Singapore. It is the first study of ecosystem carbon stocks of both vegetated and unvegetated intertidal habitats in the tropics. Ecosystem carbon stocks were 497 Mg C ha‐1 in the mangrove forest and 138 Mg C ha‐1 in the seagrass meadow. Sediment organic carbon stock dominated the total storage in both habitats, constituting 62% and >99% in the mangrove forest and seagrass meadow, respectively. In the adjacent mudflat and sandbars, which had no vegetative components, sediment organic carbon stock ranged from 124–143 Mg C ha‐1, suggesting that unvegetated habitats have a carbon storage role on the same order of importance as seagrass meadows. This study reinforces the importance of sediment in carbon storage within the intertidal ecosystem, and demonstrates the need to consider unvegetated habitats in intertidal ‘blue carbon’ stock assessments. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Phytosociological and habitat studies were conducted on the water and swamp vegetation of astatic water bodies within north-eastern Poland. The phytocoenoses were selected on the basis of dominance of species forming the particular communities. The analysis of 147 relevés showed the existence of 10 vegetation types: Lemnetum minoris, Spirodeletum polyrrhizae, Riccietum fluitantis, Elodeetum canadensis, Polygonetum natantis, Typhetum latifoliae, Caricetum elatae, Calletum palustris, Potentilletum palustris, Menyanthetum trifoliatae. Among the properties of water analysed water depth, , pH, total and carbonate hardness, PO43−, Ca2+, Mg2+ and Na+ were found to be most important in differentiating the habitats of the vegetation types studied. Substrate properties, which best differentiated the habitats of the associations studied were NO3, Na+, water content, pH and total N. In spite of the wide variability of habitat conditions occurring in astatic water bodies, particular phytocoenoses distinguished on the basis of dominance of one species were associated with specific habitats. The particular phytocoenoses or groups of phytocoenoses could be good indicators of various habitat conditions that occur within astatic water bodies or changes taking place in these habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号