首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Streams are usually susceptible to land-use change, mainly in the tropics due to high dynamic climatic conditions. Native forests have been converted for agricultural purposes with significantly impacts in streams. Nowadays, forests plantations are taking place of some degraded land and its influence in headwater streams are not well understood in tropical high-altitude streams. Thus, this study aims to assess effects of land-use changes from pasture to Eucalyptus plantations in Colombian Andean catchments on stream water conditions and structural characteristics of stream channels. The study was conducted in three catchments, one catchment covered by pasture, one catchment that was converted from pasture to Eucalyptus plantations in 1995 and one pristine catchment with native forest cover. Physical, chemical and biological conditions of stream water were assessed by measurements of water temperature, concentration of dissolved oxygen and chlorophyll-a content of epiphytic communities. The structural characteristics of stream channels were evaluated using a visual-based habitat assessment protocol from the United States Environmental Protection Agency. Principal Component Analysis (PCA) showed native forest and Eucalyptus plantations catchments associated with stream conservation characteristics and pasture catchment with overall degraded conditions. However, the Permutational multivariate analysis of variance (PERMANOVA) showed significant differences between all streams indicating that, despite the overall positive conservation aspects of native and Eucalyptus catchments, their still different from each other. Pasture catchment showed the highest values for temperature and chlorophyll-a, and the lowest values for dissolved oxygen and final score for structural characteristics. Therefore, our results demonstrated that the land-use change from pasture to Eucalyptus plantation improved the stream water conditions and the structural characteristics of the studied headwater streams. Additionally, we propose the use of the rapid bioassessment protocol coupled some stream water characteristics as a rapid and useful tool for detecting effects of land-use changes on high-altitude Andean streams.  相似文献   

3.
The relationship between stream water DOC concentrations and soil organic C pools was investigated at a range of spatial scales in subcatchments of the River Dee system in north‐east Scotland. Catchment percentage peat cover and soil C pools, calculated using local, national and international soils databases, were related to mean DOC concentrations in streams draining small‐ (<5 km2), medium‐ (12–38 km2) and large‐scale (56–150 km2) catchments. The results show that, whilst soil C pool is a good predictor of stream water DOC concentration at all three scales, the strongest relationships were found in the small‐scale catchments. In addition, in both the small‐ and large‐scale catchments, percentage peat cover was as a good predictor of stream water DOC concentration as catchment soil C pool. The data also showed that, for a given soil C pool, streams draining lowland (<700 m) catchments had higher DOC concentrations than those draining upland (>700 m) catchments, suggesting that disturbance and land use may have a small effect on DOC concentration. Our results therefore suggest that the relationship between stream water DOC concentration and catchment soil C pools exists at a range of spatial scales and this relationship appears to be sufficiently robust to be used to predict the effects of changes in catchment soil C storage on stream water DOC concentration. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
Many streams and rivers worldwide are restored with the intention to mitigate degradation caused by human activities, but these rehabilitation projects often involve physical instream work with diggers or other heavy machinery. The short-term effects of such restoration works on stream ecosystems are rarely investigated. The primary aim of our study was to assess the short-term effects of physical instream restoration works (which likely increased instream fine sediment load temporarily) on the benthic macroinvertebrate community in a lowland soft-bottomed stream, and our second aim was to compare the results of semi-quantitative kick-net and quantitative Surber sampling in this assessment. Invertebrates were collected using these two methods from three Control and three Impact sites, before and two days after recontouring the stream banks and installing instream woody cover features. Three of seven macroinvertebrate community-level indexes suggested positive short-term effects of the restoration works, whereas none indicated negative effects. By contrast, seven of the 14 most common taxa were negatively affected by the restoration works, possibly due to increased fine sediment levels reducing habitat quality for these taxa. These differences imply that taxon-specific invertebrate responses may be more suitable for detecting short-term impacts of instream restoration works than community-level metrics. Community indexes and common taxa were also likely affected by a drought in the spring and summer before restoration, which may have obscured some effects of the restoration works. Finally, kick-net and Surber sampling methods yielded similar findings for the community-level metrics but differed more for the common taxa, probably because the two methods sampled different microhabitats within the stream. Consequently, we recommend that for routine monitoring of macroinvertebrate communities in lowland soft-bottomed streams, the semi-quantitative kick-net sampling method should be used.  相似文献   

5.
Oxygenated streambeds are considered a key requirement for the successful recruitment of stream fauna, including highly endangered freshwater pearl mussel Margaritifera margaritifera. Excessive amounts of fines impede exchange between open water and interstitial, leading to colmation and low oxygen levels in the juvenile habitat. Understanding the dynamic relationship between sediment delivery, transport, deposition and remobilization in relation to anthropogenic drivers is still poorly understood, yet is essential for conservation and restoration.This study analysed spatiotemporal sediment dynamics and interstitial habitat quality in five pearl mussel streams at the border region between Bavaria, Saxony and the Czech Republic during 2018 and 2019, comparing extremely dry periods with higher discharge events caused by snow melt and rainfall. Physicochemical habitat conditions within the streambed and sediment deposition were recorded in high spatial resolution along the stream courses, with a particular focus on the effects of tributaries and outflows of man-made fishponds.Habitat conditions were unsuitable for juvenile pearl mussels at the majority of sites, indicated by pronounced differences in physicochemical parameters between open water and the substrate, independent of discharge conditions. Sediment deposition varied markedly between discharge events, in terms of both the quality and quantity of deposits. Snow melt resulted in the highest sedimentation rates, but the smallest proportion of fine particles. During low flow conditions, fine sediment deposition was highly variable, ranging from 0.048 to 4.170 kg/week/m², mostly independent of flow velocity. High spatiotemporal variation was observed within and amongst stream systems, revealing different longitudinal patterns of fine sediment deposition, with catchment land use as the main driver. Temporal variability in sediment deposition was mainly associated with the discharge condition while abiotic parameters varied mainly with season.The high site-specificity of sedimentation rates and substrate conditions in response to different discharge events highlights the importance of an adapted conservation management which considers anthropogenic effects at the local scale.  相似文献   

6.
The knowledge of the contribution of sediment sources to river networks is a prerequisite to understand the impact of land use change on sediment yield. We calculated the relative contributions of sediment sources in two paired catchments, one with commercial eucalyptus plantations (0.83 km2) and the other with grassland used for livestock farming (1.10 km2), located in the Brazilian Pampa biome, using different combinations of conventional [geochemical (G), radionuclide (R) and stable isotopes and organic matter properties (S)] and alternative tracer properties [spectrocolorimetric visible-based-colour parameters (V)]. Potential sediment sources evaluated were stream channel, natural grassland and oat pasture fields in the grassland catchment, and stream channel, unpaved roads and eucalyptus plantation in the eucalyptus catchment. The results show that the best combination of tracers to discriminate the potential sources was using GSRV tracers in the grassland catchment, and using GSRV, GSV and GS tracers in the eucalyptus catchment. In all these cases, samples were 100% correctly classified in their respective groups. Considering the best tracers results (GSRV) in both catchments, the sediment source contributions estimated in the catchment with eucalyptus plantations was 63, 30 and 7% for stream channel, eucalyptus stands and unpaved roads, respectively. In the grassland catchment, the source contributions to sediment were 84, 14 and 2% for natural grassland, stream channel and oats pasture fields, respectively. The combination of these source apportionment results with the annual sediment loads monitored during a 3-year period demonstrates that commercial eucalyptus plantations supplied approximately 10 times less sediment (0.1 ton ha−1 year−1) than the traditional land uses in this region, that is, 1.0 ton ha−1 year−1 from grassland and 0.3 ton ha−1 year−1 from oats pasture fields. These results demonstrate the potential of combining conventional and alternative approaches to trace sediment sources originating from different land uses in this region. Furthermore, they show that well-managed forest plantations may be less sensitive to erosion than grassland used for intensive livestock farming, which should be taken into account to promote the sustainable use of land in this region of South America.  相似文献   

7.
The process of selecting invertebrate-based candidate metrics for the German stream assessment system is described. The aim was to identify metrics indicating degradation types other than organic pollution and acidification (“general degradation”). For 18 out of 24 German stream types a data base of roughly 2,000 benthic invertebrate samples was generated; for each sample 79 metrics were calculated. Data on land use in the catchment were compiled for all sampling sites, together with data on hydromorphology for many sampling sites. Hydromorphological and land use parameters, which describe a clear gradient in the data sets were identified by Non-metric Multidimensional Scaling (NMS). Correlation analyses between land use/hydromorphological parameters and metric results were calculated separately for the individual stream types. Among those metrics best indicating catchment- and hydromorphological degradation in the majority of stream types are: proportion of Ephemeroptera, Plecoptera and Trichoptera; proportion of Plecoptera (mainly suited for mountain streams); number of Plecoptera taxa; proportion of xenosaprobic taxa; proportion of epirhithral preferring taxa. Differences of metric correlations between stream types and between degradation types are discussed, leading to a list of candidate metrics for assessing German streams.  相似文献   

8.
Based on benthic macroinvertebrate samples from 57 sites of streams in the European Central Highlands (Ecoregion 9; Illies (1978). Limnofauna Europaea, Stuttgart), the composition and the abundance of Simuliid species were analysed in relation to hydromorphological and land use parameters. Sampling sites were located at two stream types differing in catchment geology, stream morphology and channel width. Land use data were taken from the official German information system for cartography and topography (ATKIS) and the German River Habitat Survey. Land use categories suitable to describe the sampling sites were ‘agricultural land’, ‘urban’ and near-natural areas. Hydromorphological parameters of the sites were recorded using the AQEM site protocol (AQEM Consortium (2002). Manual for the application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Water Framework Directive. EVK1-CT1999-00027, Version 1.0. Available via the Internet from www.aqem.de). Relevant parameters controlling Simuliid distribution in streams were the mineral substrates and the biotic microhabitats. Blackfly larvae and pupae were sampled at each site for 15 min. Statistical analysis was performed by CANOCO® (Ter Braak & Smilauer (1997). CANOCO Version 4.5. Biometrics Plant Research International, Wageningen, The Netherlands) using redundancy analysis (RDA).

Our results show a stream type-specific composition of the Blackfly fauna. The analyses reveal sensitivity of the Simuliid species to morphological degradation, which is indicated by the shift in the longitudinal zonation of the Simuliid communities. Especially, Prosimulium hirtipes (Fries, 1824) and Simulium argyreatum Meigen, 1838 are typical representatives of headwater streams. While they seem to indicate undisturbed conditions of this stream type and react sensitively to the degradation of stream habitats, Simulium ornatum Meigen, 1818 and Simulium equinum (Linnaeus, 1758) are more tolerant to stream degradation.

On catchment scale, ‘% natural forest’ and ‘% agricultural land use’ illustrate the degree of degradation of the two selected stream types. ‘Average stream depth’ and ‘relation riffles/pools’ account for hydromorphological degradation reflected by Simuliid species on the smaller reach scale. The analysis of habitat quality revealed that ‘% woody debris’ represents an important parameter of morphological degradation reflected by the Blackfly community.  相似文献   


9.
10.
Stream chemistry is often used to infer catchment‐scale biogeochemical processes. However, biogeochemical cycling in the near‐stream zone or hydrologically connected areas may exert a stronger influence on stream chemistry compared with cycling processes occurring in more distal parts of the catchment, particularly in dry seasons and in dry years. In this study, we tested the hypotheses that near‐stream wetland proportion is a better predictor of seasonal (winter, spring, summer, and fall) stream chemistry compared with whole‐catchment averages and that these relationships are stronger in dryer periods with lower hydrologic connectivity. We evaluated relationships between catchment wetland proportion and 16‐year average seasonal flow‐weighted concentrations of both biogeochemically active nutrients, dissolved organic carbon (DOC), nitrate (NO3‐N), total phosphorus (TP), as well as weathering products, calcium (Ca), magnesium (Mg), at ten headwater (<200 ha) forested catchments in south‐central Ontario, Canada. Wetland proportion across the entire catchment was the best predictor of DOC and TP in all seasons and years, whereas predictions of NO3‐N concentrations improved when only the proportion of wetland within the near‐stream zone was considered. This was particularly the case during dry years and dry seasons such as summer. In contrast, Ca and Mg showed no relationship with catchment wetland proportion at any scale or in any season. In forested headwater catchments, variable hydrologic connectivity of source areas to streams alters the role of the near‐stream zone environment, particularly during dry periods. The results also suggest that extent of riparian zone control may vary under changing patterns of hydrological connectivity. Predictions of biogeochemically active nutrients, particularly NO3‐N, can be improved by including near‐stream zone catchment morphology in landscape models.  相似文献   

11.
Human‐accelerated climate change is quickly leading to glacier‐free mountains, with consequences for the ecology and hydrology of alpine river systems. Water origin (i.e., glacier, snowmelt, precipitation, and groundwater) is a key control on multiple facets of alpine stream ecosystems, because it drives the physico‐chemical template of the habitat in which ecological communities reside and interact and ecosystem processes occur. Accordingly, distinct alpine stream types and associated communities have been identified. However, unlike streams fed by glaciers (i.e., kryal), groundwater (i.e., krenal), and snowmelt/precipitation (i.e., rhithral), those fed by rock glaciers are still poorly documented. We characterized the physical and chemical features of these streams and investigated the influence of rock glaciers on the habitat template of alpine river networks. We analysed two subcatchments in a deglaciating area of the Central European Alps, where rock glacier‐fed, groundwater‐fed, and glacier‐fed streams are all present. We monitored the spatial, seasonal, and diel variability of physical conditions (i.e., water temperature, turbidity, channel stability, and discharge) and chemical variables (electrical conductivity, major ions, and trace element concentrations) during the snowmelt, glacier ablation, and flow recession periods of two consecutive years. We observed distinct physical and chemical conditions and seasonal responses for the different stream types. Rock glacial streams were characterized by very low and constant water temperatures, stable channels, clear waters, and high concentrations of ions and trace elements that increased as summer progressed. Furthermore, one rock glacier strongly influenced the habitat template of downstream waters due to high solute export, especially in late summer under increased permafrost thaw. Given their unique set of environmental conditions, we suggest that streams fed by thawing rock glaciers are distinct river habitats that differ from those normally classified for alpine streams. Rock glaciers may become increasingly important in shaping the hydroecology of alpine river systems under continued deglaciation.  相似文献   

12.
We demonstrate how land use can drive mountain streams in the Southern Rockies across a threshold to induce an alternative state of significantly reduced physical complexity of form and reduced ecological function. We evaluate field data from 28 stream reaches in relatively laterally unconfined valleys and unmanaged forest that is either old‐growth forest or naturally disturbed younger forest, and 19 stream reaches in managed forest with past land use. We evaluate potential differences in stream form, as reflected in channel planform, cross‐sectional geometry, and in‐stream wood loads, and stream function, as reflected in pool volume and storage of organic carbon. Field data indicate a threshold of differences in stream form and function between unmanaged and managed stream reaches, regardless of forest stand age, supporting our hypothesis that the legacy effects of past land use result in an alternative state of streams. Because physical complexity that increases stream retentiveness and habitat can maintain aquatic‐riparian ecosystem functions, the alternative physical state of streams in managed watersheds creates a physical template for an alternative ecological state with reduced pool volume, organic carbon storage, and ecosystem productivity. We recommend maintaining riparian forests that can supply large wood to streams as a stream restoration technique in historically forested stream segments. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
A comprehensive framework for the assessment of water and salt balance for large catchments affected by dryland salinity is applied to the Boorowa River catchment (1550 km2), located in south‐eastern Australia. The framework comprised two models, each focusing on a different aspect and operating on a different scale. A quasi‐physical semi‐distributed model CATSALT was used to estimate runoff and salt fluxes from different source areas within the catchment. The effects of land use, climate, topography, soils and geology are included. A groundwater model FLOWTUBE was used to estimate the long‐term effects of land‐use change on groundwater discharge. Unlike conventional salinity studies that focus on groundwater alone, this study makes use of a new approach to explore surface and groundwater interactions with salt stores and the stream. Land‐use change scenarios based on increased perennial pasture and tree‐cover content of the vegetation, aimed at high leakage and saline discharge areas, are investigated. Likely downstream impacts of the reduction in flow and salt export are estimated. The water balance model was able to simulate both the daily observed stream flow and salt load at the catchment outlet for high and low flow conditions satisfactorily. Mean leakage rate of about 23·2 mm year?1 under current land use for the Boorowa catchment was estimated. The corresponding mean runoff and salt export from the catchment were 89 382 ML year?1 and 38 938 t year?1, respectively. Investigation of various land‐use change scenarios indicates that changing annual pastures and cropping areas to perennial pastures is not likely to result in substantial improvement of water quality in the Boorowa River. A land‐use change of about 20% tree‐cover, specifically targeting high recharge and the saline discharge areas, would be needed to decrease stream salinity by 150 µS cm?1 from its current level. Stream salinity reductions of about 20 µS cm?1 in the main Lachlan River downstream of the confluence of the Boorowa River is predicted. The FLOWTUBE modelling within the Boorowa River catchment indicated that discharge areas under increased recharge conditions could re‐equilibrate in around 20 years for the catchment, and around 15 years for individual hillslopes. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
15.
A study of the hydrologic effects of catchment change from pasture to plantation was carried out in Gatum, south‐western Victoria, Australia. This study describes the hydrologic characteristics of two adjacent catchments: one with 97% grassland and the other one with 62% Eucalyptus globulus plantations. Streamflow from both catchments was intermittent during the 20‐month study period. Monthly streamflow was always greater in the pasture‐dominated catchment compared with the plantation catchment because of lower evapotranspiration in the pasture‐based catchment. This difference in streamflow was also observed even during summer 2010/2011 when precipitation was 74% above average (1954–2012) summer rainfall. Streamflow peaks in the plantation‐based catchment were smaller than in the pasture‐dominated system. Flow duration curves show differences between the pasture and plantation‐dominated catchments and affect both high‐flow and low‐flow periods. Groundwater levels fell (up to 4.4 m) in the plantation catchment during the study period but rose (up to 3.2 m) in the pasture catchment. Higher evapotranspiration in the plantation catchment resulted in falling groundwater levels and greater disconnection of the groundwater system from the stream, resulting in lower baseflow contribution to streamflow. Salt export from each catchment increases with increasing flow and is higher at the pasture catchment, mainly because of the higher flow. Reduced salt loading to streams due to tree planting is generally considered environmentally beneficial in saline areas of south‐eastern Australia, but this benefit is offset by reduced total streamflow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Understanding runoff generation processes is important for flood prediction, water management, erosion control, water quality, contaminant transport and the evaluation of impacts of land use change. However, little process research has been carried out in southern Chile. In particular the young volcanic ash soils, which are typical for this area, are not well understood in their hydrologic behaviour. To establish a ‘reference study’ which can then be used for comparison with other (disturbed) sites, this study focuses on the investigation of runoff generation processes in an undisturbed, forested catchment in the Chilean Andes. The paper reports on an investigation of these processes with different tracer methods at different spatial scales. Hydrograph separation with environmental isotopes and geochemical constituents was used on the catchment scale. Thermal energy was used as a tracer to investigate groundwater–surface water interactions at the local stream reach scale and dye tracers were used to study infiltration and percolation characteristics at the plot scale. It was found that pre‐event water dominates the storm hydrograph. In the lower reaches, however, water usually exfiltrates from the stream into the adjacent aquifer. The dye tracer experiments showed that while preferential vertical flow dominates under forest, water infiltrates as a straight horizontal front in the bare volcanic ashes (no vegetation) on the catchment rim. Subsurface flow patterns in the forest differ significantly from summer to winter. All three approaches used in this study suggest an important shift in dominant processes from dry to wet season. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Temperature observations at 25 sites in the 2000 km2 Dee catchment in NE Scotland were used, in conjunction with geographic information system (GIS) analysis, to identify dominant landscape controls on mean monthly maximum stream temperatures. Maximum winter stream temperatures are mainly controlled by elevation, catchment area and hill shading, whereas the maximum temperatures in summer are driven by more complex interactions, which include the influence of riparian forest cover and distance to coast. Multiple linear regression was used to estimate the catchment‐wide distribution of mean weekly maximum stream temperatures for the hottest week of the 2‐year observation period. The results suggested the streams most sensitive to high temperatures are small upland streams at exposed locations without any forest cover and relatively far inland, while lowland streams with riparian forest cover at locations closer to the coast exhibit a moderated thermal regime. Under current conditions, all streams provide a suitable thermal habitat for both, Atlantic salmon and brown trout. Using two climate change scenarios assuming 2·5 and 4 °C air temperature increases, respectively, temperature‐sensitive zones of the stream network were identified, which could potentially have an adverse effect on the thermal habitat of Atlantic salmon and brown trout. Analysis showed that the extension of riparian forests into headwater streams has the potential to moderate changes in temperature under climate change. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
19.
Rivers in the Mediterranean region often exhibit an intermittent character. An understanding and classification of the flow regimes of these rivers is needed, as flow patterns control both physicochemical and biological processes. This paper reports an attempt to classify flow regimes in Mediterranean rivers based on hydrological variables extracted from discharge time series. Long‐term discharge records from 60 rivers within the Mediterranean region were analysed in order to classify the streams into different flow regime groups. Hydrological indices (HIs) were derived for each stream and principal component analysis (PCA) and then applied to these indices to identify subsets of HIs describing the major sources of variations, while simultaneously minimizing redundancy. PCA was performed for two groups of streams (perennial and temporary) and for all streams combined. The results show that whereas perennial streams are mainly described by high‐flow indices, temporary streams are described by duration, variability and predictability indices. Agglomerative cluster analysis based on HIs identified six groups of rivers classified according to differences in intermittency and variability. A methodology allowing such a classification for ungauged catchments was also tested. Broad‐scale catchment characteristics based on digital elevation, climate, soil and land use data were derived for each long‐term station where these data were available. By using stepwise multiple regression analysis, statistically significant relationships were fitted, linking the three selected hydrological variables (mean annual number of zero‐flow days, predictability and flashiness) to the catchment characteristics. The method provides a means of simplifying the complexity of river systems and is thus useful for river basin management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Land use in Panama has changed dramatically with ongoing deforestation and conversion to cropland and cattle pastures, potentially altering the soil properties that drive the hydrological processes of infiltration and overland flow. We compared plot-scale overland flow generation between hillslopes in forested and actively cattle-grazed watersheds in Central Panama. Soil physical and hydraulic properties, soil moisture and overland flow data were measured along hillslopes of each land-use type. Soil characteristics and rainfall data were input into a simple, 1-D representative model, HYDRUS-1D, to simulate overland flow that we used to make inferences about overland flow response at forest and pasture sites. Runoff ratios (overland flow/rainfall) were generally higher at the pasture site, although no overall trends were observed between rainfall characteristics and runoff ratios across the two land uses at the plot scale. Saturated hydraulic conductivity (Ks) and bulk density were different between the forest and pasture sites (p < 10−4). Simulating overland flow in HYDRUS-1D produced more outputs similar to the overland flow recorded at the pasture site than the forest site. Results from our study indicate that, at the plot scale, Hortonian overland flow is the main driver for overland flow generation at the pasture site during storms with high-rainfall totals. We infer that the combination of a leaf litter layer and the activation of shallow preferential flow paths resulting in shallow saturation-excess overland flow are likely the main drivers for plot scale overland flow generation at the forest site. Results from this study contribute to the broader understanding of the delivery of freshwater to streams, which will become increasingly important in the tropics considering freshwater resource scarcity and changing storm intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号