共查询到20条相似文献,搜索用时 15 毫秒
1.
Frank Verheest 《Astrophysics and Space Science》1987,138(1):209-215
The large differences in drift velocities between the solar wind protons and the picked-up ions of cometary origin cause the Alfvén waves (among others) to become unstable and generate turbulence. A self-consistent treatment of such instabilities has to take into account that these cometary ions affect the solar wind plasma in a decisive way. With the help of a previously developed formalism one finds the correct Alfvén instability criterion, which is here nondispersive, in contrast to recent calculations where the cometary ions are treated as a low-density, high-speed, and non-neutral beam through an otherwise undisturbed solar wind. The true bulk speed of the combined solar wind plus cometary ion plasma clearly shows the mass-loading and deceleration of the solar wind near the cometary nucleus, indicating a bow shock. The instability criterion is also used to determine the region upstream where the Alfvén waves can be unstable, based upon recent observations near comet Halley. 相似文献
2.
3.
Magnetic field-aligned irregularities of the background plasma are assumed to be responsible for a strong conversion of upper hybrid plasma wave turbulence (PT) into the radio emission. It is shown that small-scale stratification (induced by PT interference and thermodiffusion) leads to the random occurrence of spike-type radio bursts. 相似文献
4.
The adiabatic theory of interaction between high and low frequency waves has been studied for the case of electron plasma oscillations and ion acoustic waves and the results are applied to the solar wind. The modified dispersion relation for ion acoustic waves has been derived, taking a Gaussian distribution for plasmons. Two limiting cases of the spectrum are studied. For a broad spectrum, the plasma turbulence has a destabilising effect by introducing a growth rate denoted by turbulence, which is positive for k
0 > (m
e/
m
i
)1/2
De
–1
, k
0 being the central wave numger of the spectrum,
De the electron Debye length. Also, even for v
d(drift velocity between electrons and ions) < c
s, we arrive at unstable ion acoustic modes. For narrow spectrum, the plasma turbulence has a stabilising effect. 相似文献
5.
Low-frequency radio observations offer unique diagnostics of the solar corona and solar wind. After a prolongued hiatus, there is renewed interest in this important frequency regime. Two new ground-based instruments will provide critical new low-frequency observations: the low-frequency array (LOFAR) and the frequency agile solar radiotelescope (FASR). This brief topical review summarizes low-frequency radio phenomena that will be accessible to detailed study by LOFAR and FASR in the coming decade. Energy release, drivers of space weather, and studies of the solar wind are emphasized. Both instruments are expected to play important roles in both basic research problems and national and international space weather capabilities. While FASR is a solar-dedicated instrument, LOFAR is not. Solar observing requirements for LOFAR are briefly discussed. 相似文献
6.
A. N. Kryshtal A. D. Voitsekhovska S. V. Gerasimenko O. K. Cheremnykh 《Kinematics and Physics of Celestial Bodies》2017,33(4):149-165
The studied region is a part of the current circuit of a magnetic loop in a solar active region in the altitude range of 1400–2500 km above the photosphere. At the earliest stage of development of a flare process, the magnetic field of the loop was assumed to be stationary and uniform in the interval corresponding to weak fields (the so-called deca-hectogauss fields). The conditions for emergence and development of instability of the second harmonic of Bernstein modes in this previously unexamined region were determined. This instability (and low-frequency instabilities emerging later) was assumed to be caused by the sub-Dreicer electric field of the loop, while pair Coulomb collisions were considered to be the major factor hindering its development. The obtained extremely low instability thresholds point to the possibility of subsequent emergence of low-frequency instabilities (and plasma waves corresponding to them) with much higher threshold values against the background of saturated Bernstein turbulence. The frequency of electron scattering by turbulence pulsations in this scenario normally exceeds the frequency of pair Coulomb (primarily ion–electron) collisions. Both the quasistatic sub-Dreicer field in the loop and the weak spatial inhomogeneity of plasma temperature and density were taken into account in the process of derivation and analysis of the dispersion relation for low-frequency waves. It was demonstrated that the solutions of the obtained dispersion relation in the cases of prevalent pair Coulomb collisions and dominant electron momentum losses at pulsations of saturated Bernstein turbulence are morphologically similar and differ only in the boundary values of perturbation parameters. In both cases, these solutions correspond to the two wave families, namely, kinetic Alfven waves and kinetic ion acoustic waves. These waves have their own electric fields and may play the important role in the process of preflare acceleration of energetic electrons. 相似文献
7.
We present a model that describes Io's delayed electrodynamic response to a temporal change in Io's atmosphere. Our model incorporates the relevant physical processes involved in Io's atmosphere-ionosphere-magnetosphere electrodynamic interaction to predict the far-ultraviolet (FUV) radiation as Io enters Jupiter's shadow and re-emerges into sunlight. The predicted FUV brightnesses are highly nonlinear as the strength of the electrodynamic interaction depends on the ratios of ionospheric conductances to the torus Alfvén conductance, but the former are functions of electrodynamics and the atmospheric density, which decays rapidly upon entering eclipse. Key factors governing the time evolution are the column density due to sublimation and the column density due to volcanoes, which maintain the background atmosphere during eclipse. The plasma interaction does not react instantaneously, but lags to a temporarily changing atmosphere. We find three qualitatively different scenarios with two of them including a post-eclipse brightening. The brightness ratio of in-sunlight/in-eclipse coupled with the existence of a sub-jovian equatorial spot constrains the volcanic column density to several times 1018 m−2, based on the currently available observations. Thus in sunlight, the sublimation driven part of Io's atmosphere dominates the volcanically driven contribution by roughly a factor of 10 or more. 相似文献
8.
B. Buti 《Astrophysics and Space Science》1996,243(1):33-41
Large amplitude waves as well as turbulence has been observed in the interplanetary medium. This turbulence is not understood to the extent that one would like to. By means of techniques of nonlinear dynamical systems, attempts are being made to properly understand the turbulence in the solar wind, which is essentially a nonuniform streaming plasma consisting of hydrogen and a fraction of helium. We demonstrate that the observed large amplitude waves can generate solitary waves, which in turn, because of some propagating solar distubance, can produce chaos in the medium. The chaotic fields thus generated can lead to anomalously large plasma heating and acceleration.Unlike the solitary waves in uniform plasmas, in nonuniform plasmas we get accelerated solitary waves, which lead to electromagnetic as well as electrostatic (e.g. ion acoustic) radiations. The latter can be a very efficient source of plasma heating. 相似文献
9.
Several authors have claimed for correlations between surges (dark features) and various kinds of solar emissions (radio, microwave, X-ray). In this paper we propose a model to explain such correlations, in particular presenting the properties of the instabilities resulting from the coupling between material flow, connected to the appearance of a surge, and magnetic field topology. As a consequence of such instability a turbulent energy cascade to small characteristic lengths grows up. Depending of the relevant parameters of the surge (dark feature), different regimes can be found, producing different levels of electrons acceleration and mass motion deceleration. We try then to correlate the different developments of the instability with the behavior observed in type I and type III radio bursts related to surges.Proceedings of the Second CERSA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986. 相似文献
10.
Nobuki Kawashema
Naoshi Fukushima
《Planetary and Space Science》1964,12(12):1187-1190A laboratory experiment is designed to study the interaction of the solar wind with the geomagnetic field. Time-exposure and time-resolved photographs are taken when plasma hits a model Earth, and direct measurements are made of the magnetic field change, plasma density and electric current distribution. The shape of the magnetic cavity formed on the upstream side of the model Earth is almost the same as that calculated for the geomagnetic cavity. The charged particles, which penetrate the magnetic cavity formed on the upstream side of the model Earth with east-west asymmetry from the neutral points on the cavity surface, appear to concentrate towards the equator on the rear side of the model, forming a westward electric current belt within the magnetosphere. When the dipole axis is not perpendicular to the plasma gun—magnetic dipole line, the invasion of plasma is more pronounced at the cusp of the cavity nearer to the gun. Charged particles appear to penetrate to a greater extent if a uniform external magnetic field is applied parallel to the magnetic dipole than if one is applied antiparallel. 相似文献
11.
A statistical framework of weak turbulence is applied to investigate the maintenance of atmospheric turbulence during a long period, even after the external energy supply from solar radiations has stopped. Thus, the problem of hydrodynamical turbulence without any mean motion is dealt with. Main attention is drawn to one-dimensional Burgers equation, together with a discussion devoted mainly to Millionshtchikov's hypothesis, which may be applied as a consequence of the assumed weak turbulence. Remarkably, this leads to an explicit proof of the existence of the cascade process in turbulence. The results are illustrated by numerical calculations.On study leave from the Department of Physics, M.S. College, Subaranpur, U.P., India. 相似文献
12.
Isolated events of proton and alpha particle precipitation in the Venusian atmosphere were recorded with the use of the ASPERA-4 analyzer on board the ESA Venus Express spacecraft. Using a Monte Carlo simulation method for calculation of proton and alpha particle precipitations in the Venusian atmosphere, reflected and upward directed particle fluxes have been found. It has been found that only a vanishing percentage of protons and alpha particles are backscattered to the Venusian exosphere when neglecting the induced magnetic field and under conditions of low solar activity. Accounting for the induced field drastically changes the situation: the backscattered by the atmosphere energy fluxes increase up to 44% for the horizontal magnetic field B = 20 nT, measured for Venus, for the case of precipitating protons, and up to 64%, for alpha particles. The reflected energy fluxes increase to about 100% for both protons and alpha particles as the field grows to 40 nT, i.e., the atmosphere is protected against penetration of solar wind particles. 相似文献
13.
M. Gedalin E. Gruman D.B. Melrose 《Monthly notices of the Royal Astronomical Society》2001,325(2):715-725
The properties of waves in a pulsar magnetosphere are considered in the most general case of a non-neutral, current-carrying pair plasma with arbitrary distribution functions for electrons and positrons. General dispersion relations are derived for a strong but finite magnetic field, including gyrotropic terms caused by the deviations from quasi-neutrality and the relative streaming of electrons and positrons. It is shown how the ellipticity of the wave polarization depends on the plasma parameters and angle of propagation. Two examples of plasma distributions are analysed numerically: a waterbag distribution and a piecewise distribution that models the numerical result for pair cascades. A possible application to the interpretation of the observed circular polarization of some pulsars is discussed. 相似文献
14.
R. I. Kostik 《Solar physics》1982,78(1):39-57
In the region of the formation of weak and medium-strong lines, the microturbulence increases with height (V
ver=0.7–0.9 km s-1, V
hor= 1.1–1.5 km s-1), the macroturbulence decreases (V
ver=1.6–1.4 km s-1, V
hor= 2.4–1.5 km s-1), and the total velocity field (vertical component) is depth-independent (1.7 km s-1). The empirical damping constants for Fe, Ti, Cr, Ni lines are equal 1.36, 1.76, 1.66, 1.66, respectively. The correlation length (the Kubo-Anderson process has been used) in the solar photosphere is 520–550 km. 相似文献
15.
We investigate the properties of intermittency of magnetic turbulence by using magnetic field data collected by the Helios spacecraft in the inner heliosphere. Clear scaling laws for magnetic structure functions are visible in periods where the velocity of the bulk plasma is low. Within these periods we found that intermittency of magnetic turbulence is high with respect to velocity field. A comparison with fluid flows where passive scalars are more intermittent than velocity, yields to consider the magnetic field like a “passive vector”. 相似文献
16.
George H. Nickel 《Solar physics》1969,10(2):472-475
A numerical model has been made to test the theory that solar differential rotation is maintained by the Countergradient transport of energy peculiar to two-dimensional turbulence. After a brief discussion of this turbulent process, the numerical methods employed and their application to the sun are reviewed. The results of one problem are presented, indicating that this model can represent the observed large-scale nature of the sun's surface. The reader is referred to the author's dissertation for complete details of the methods and calculations. 相似文献
17.
Alberto Righini 《Solar physics》1972,25(1):242-251
Results on the structure coefficient of the temperature field present in the low atmosphere are presented. Measurements have been performed during the national Italian expedition for solar site testing in Isola delle Correnti (southern Sicily).Calculations have been carried out to show the effect of the observed thermal properties of the low atmosphere on telescope performances, with various assumptions as the structure at greater heights. 相似文献
18.
The occurrence of modulational instability in the current sheet is investigated. Particular attention is drawn to the plasma micro-instability in this current sheet (i.e., the diffusion region) and its relation to the flare process. It is found that the solitons or strong Langmuir turbulence is likely to occur in the diffusion region under solar flare conditions in which the electric resistivity could be greatly enhanced by several orders of magnitude in this diffusion region. The result is a significant heating and stochastic acceleration of particles. Physically, the occurrence of soliton and strong Langmuir turbulence can be identified with a sudden eruption of an electric current leading to a local vacuum in which an electric potential is formed and results in the release of a huge amount of free energy. A numerical example is used to demonstrate the transition of the magnetic field, velocity, and plasma density from the outer MHD region into the diffusive (resistive) region and, then, back out again with the completion of the energy conversion process. This is all made possible by an increase of resistivity by 4–5 orders of magnitude over the classical value. 相似文献
19.
Steven R. Spangler 《Astrophysics and Space Science》1996,243(1):65-75
I discuss the use of Very Long Baseline Interferometer (VLBI) phase scintillations to probe the conditions of plasma turbulence in the solar wind. Specific results from 5.0 and 8.4 GHz observations with the Very Long Baseline Array (VLBA) are shown. There are several advantages of phase scintillation measurements. They are sensitive to fluctuations on scales of hundreds to thousands of kilometers, much larger than those probed by IPS intensity scintillations. In addition, with the frequency versatility of the VLBA one can measure turbulence from the outer corona 5–10R
to well past the perihelion approach of the Helios spacecraft. This permits tests of the consistency of radio propagation and direct in-situ measurements of turbulence. Such a comparison is made in the present paper. Special attention is dedicated to measuring the dependence of the normalization coefficient of the density power spectrum,C
N
2
on distance from the sun. Our results are consistent with the contention published several years ago by Aaron Roberts, that there is insufficient turbulence close to the sun to account for the heating and acceleration of the solar wind. In addition, an accurate determination of theC
N
2
(R) relationship could aid the detection of transients in the solar wind. 相似文献