首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the results of the impact of the 3D variational data assimilation (3DVAR) system within the Weather Research and Forecasting (WRF) model to simulate three heavy rainfall events (25–28 June 2005, 29–31 July 2004, and 7–9 August 2002) over the Indian monsoon region. For each event, two numerical experiments were performed. In the first experiment, namely the control simulation (CNTL), the low-resolution global analyses are used as the initial and boundary conditions of the model. In the second experiment (3DV-ANA), the model integration was carried out by inserting additional observations in the model’s initial conditions using the 3DVAR scheme. The 3DVAR used surface weather stations, buoy, ship, radiosonde/rawinsonde, and satellite (oceanic surface wind, cloud motion wind, and cloud top temperature) observations obtained from the India Meteorological Department (IMD). After the successful inclusion of additional observational data using the 3DVAR data assimilation technique, the resulting reanalysis was able to successfully reproduce the structure of convective organization as well as prominent synoptic features associated with the mid-tropospheric cyclones (MTC). The location and intensity of the MTC were better simulated in the 3DV-ANA as compared to the CNTL. The results demonstrate that the improved initial conditions of the mesoscale model using 3DVAR enhanced the location and amount of rainfall over the Indian monsoon region. Model verification and statistical skill were assessed with the help of available upper-air sounding data. The objective verification further highlighted the efficiency of the data assimilation system. The improvements in the 3DVAR run are uniformly better as compared to the CNTL run for all the three cases. The mesoscale 3DVAR data assimilation system is not operational in the weather forecasting centers in India and a significant finding in this study is that the assimilation of Indian conventional and non-conventional observation datasets into numerical weather forecast models can help improve the simulation accuracy of meso-convective activities over the Indian monsoon region. Results from the control experiments also highlight that weather and regional climate model simulations with coarse analysis have high uncertainty in simulating heavy rain events over the Indian monsoon region and assimilation approaches, such as the 3DVAR can help reduce this uncertainty.  相似文献   

2.
Rainfall prediction remains one of the most challenging problems in weather forecasting. In order to improve high-resolution quantitative precipitation forecasts (QPF), a new procedure for assimilating rainfall rate derived from radar composite reflectivity has been proposed and tested in a numerical simulation of the Chicago floods of 17–18 July 1996. The methodology is based on the one-dimensional variation scheme (1DVAR) assimilation approach introduced by Fillion and Errico but applied here using the Ka...  相似文献   

3.
The three-dimensional variational data assimilation (3DVAR) technique in the advanced weather research and forecast model is used to study the impact of assimilating Moderate Resolution Spectroradiometer (MODIS) retrieved temperature and humidity profiles on the dynamic and thermodynamic features for three monsoon depressions over the Bay of Bengal, India. For better understanding of the role of various physical processes in the evolution of monsoon depression, a detailed diagnostic study is performed on all the three depression cases. Numerical experiments were conducted in a system of two-way nested domains with a horizontal resolution of 36 and 12 km, respectively. The assimilation of MODIS data did improve the mean sea level pressure patterns and spatial distribution of rainfall patterns in all the three monsoon depression cases studied. Higher values of equitable threat score and lower bias values are seen consistently for the entire rainfall threshold range and for all the three depression cases with 3DVAR assimilation of MODIS temperature and humidity profiles. The current operational regional models in India do not ingest the MODIS temperature and humidity profiles and hence the present study is particularly relevant to the operational forecasting community in India in their ongoing efforts to improve weather forecasting over India.  相似文献   

4.
This study examines the performance of coupling the deterministic four-dimensional variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum likelihood solutions through minimization of a cost function about which the ensemble perturbations are transformed, and the resulting ensemble analysis can be propagated forward both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of this coupled approach are demonstrated in an idealized model with simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less sensitive to either the ensemble size or the assimilation window length than those for standard EnKF or 4DVAR implementations.  相似文献   

5.
Summary ?The status and progress of the four-dimensional variational data assimilation (4DVAR) are briefly reviewed focusing on application to prediction of mesoscale/storm-scale atmospheric phenomena. Theoretical background is provided for each important component of the 4DVAR system – forecast and adjoint models, observations, background, cost function, preconditioning, and minimization. An overview of practical issues specific for mesoscale/storm-scale 4DVAR is then presented in terms of high-resolution observations, nonlinearity and discontinuity problem, model error, errors from lateral boundary condition, and precipitation assimilation. Practical strategies for efficient and simplified 4DVAR are also introduced, e.g., incremental 4DVAR, poor man’s 4DVAR, and inverse 3DVAR. A new concept on hybrid approach is proposed to combine an efficient 4DVAR scheme and the standard 4DVAR scheme aiming at reducing computational demand required by the standard 4DVAR while improving the accuracy of the simplified 4DVAR. Applications to both hydrostatic and nonhydrostatic models are illustrated and our vision on opportunities and directions for future research is provided. Received March 12, 2001; revised July 24, 2001; accepted September 5, 2001  相似文献   

6.
GRAPES非静力数值预报模式的三维变分资料同化系统的发展   总被引:18,自引:3,他引:18  
为了减少分析变量与模式状态变量之间的插值误差,改善业务预报模式的初值质量,在GRAPES等压面三维变分资料同化系统的基础上,研究发展了针对GRAPES区域模式的非静力模式变量三维变分资料同化系统(GRAPES m3DVAR).该资料同化系统的垂直坐标及其分析变量的水平分布格式、垂直跳点方案与GRAPES预报模式保持完全一致.由于垂直坐标的变化和非静力关系,m3DVAR分析系统中设计了求解动力学约束方程的新方案.通过有效的高精度数学方案,避免了地形追随坐标下平衡方程的非线性项造成的复杂计算,有效解决了非静力平衡条件下求解平衡方程中非线性项的切线性方程和伴随方程引起的困难.重新构造各种观测算子,并考虑了质量场和风场之间的平衡约束关系、背景误差协方差结构,实现对探空、地面资料、船舶报等常规观测的同化.理想单点试验和实际资料的多变量资料同化分析结果表明,非静力模式变量三维变分资料同化系统能够正确地描写多变量之间的相互作用以及物理约束关系,分析结果合理,能够有效减少原等压面三维变分资料同化系统的分析与模式变量之间需要相互插值、变换产生的误差,在一定程度上提高了分析场质量,对预报模式的初值具有一定改善.  相似文献   

7.
利用国家气象中心中尺度业务数值预报模式GRAPES-MESO v3.0,以2010年6月1~30日为例,开展地面降水率1DVAR(one-dimensional variational assimilation)同化方案在GRAPES-3DVAR(three-dimensional variational assimilation)同化系统中的应用试验研究(ASSI试验),并以未加降水资料同化的试验为对照试验(CNTL试验),以评估全国1h加密雨量资料在模式中同化应用的效果。结果表明:1)在相对湿度背景误差和降水率观测误差范围内,1DVAR同化方案能够对湿度廓线进行有意义的调整,使分析降水向观测降水靠近;ASSI试验对初始温、压、湿、风场的修正主要为正效果;2)对2010年6月17~21日江南、华南连续性降水过程进行了分析,整体而言ASSI试验对逐日及逐时降水强度的预报普遍强于CNTL试验,与实况更加接近;3)ASSI试验对2010年6月1~30日08时起报的0~24 h模式预报的小雨、中雨、大雨、暴雨、大暴雨各个降水量级TS评分及ETS评分相比CNTL试验均有较明显提高,预报偏差也更接近于1;4)ASSI试验较CNTL试验能更好地模拟雨带的分布、雨带演变特征和降水强度的变化;5)对降水所做的典型个例和统计检验分析从不同角度说明了地面降水资料1DVAR同化方案在GRAPES-3DVAR系统中的应用改善了GRAPES-MESO v3.0的降水模拟效果。  相似文献   

8.
多普勒激光雷达风场反演方法研究   总被引:3,自引:0,他引:3  
采用三维变分同化反演(3DVAR)、 四维变分同化反演(4DVAR) 对多普勒激光雷达资料反演风场的方法进行了研究, 利用车载多普勒激光雷达在2008年残奥会测试赛期间外场试验取得的数据, 反演了海面10 m高度处的风场, 并将风场反演结果与浮标资料进行了对比分析, 结果表明: 3DVAR、4DVAR风场反演方法均能实现近海面风的精细化风场反演, 并能反映出风向的变化, 反演风场与浮标数据基本一致, 在风速较大的天气情况, 3DVAR与4DVAR反演风场的一致性要好于风速较小的天气情况; 4DVAR反演方法中以浮标资料作为背景场, 使得其与浮标的符合程度要好于3DVAR方法反演风场; 反演风场的风向与浮标风向具有很好的相关关系, 反演风场的风速与浮标风速具有一定的相关关系, 反演风场的风向、风速与浮标的风向、风速之间平均均方根误差和平均绝对误差表明, 这两序列之间具有一定差别, 在风速较小的天气情况下使用时需要注意。  相似文献   

9.
文中使用四维变分同化技术将海温观测资料同化到Zebiak-Cane模式中,通过优化模式的初始场提高了模式的预报技巧.通过用理想场进行检验,说明所建立的同化伴随模式是正确的 .用文中建立的四维变分同化模式以1997年1月为初始场所做的预报结果与实况相比,结果较好.这对今后ENSO预报打下了良好的基础.  相似文献   

10.
何静  陈敏  仲跻芹  洪晓媛 《气象学报》2019,77(2):210-232
以业务应用为目标,开展雷达反射率三维拼图观测资料在北方区域数值预报系统中的同化应用研究。采用雷达反射率间接同化方法同化北方雷达反射率拼图观测资料,重点关注其对降水、湿度、温度及风的预报能力影响。首先,基于2017年8月雷达拼图观测资料批量同化和对比试验,对雷达拼图资料同化应用效果进行定量评估,结果表明雷达拼图资料同化虽然加大了地面风场预报误差,但在降水预报和湿度、温度预报等方面有明显的改善作用。其次,选择在业务中预报难度较大的强降水个例开展分析研究,分析表明:(1)同化雷达拼图观测资料有效提高了模式降水预报性能,临近降水发生的循环起报时次预报效果更好;(2)对于短时间多次强降水过程发生的预报,循环同化雷达拼图资料可及时弥补模式中由于前次降水导致的水汽、能量等消耗及热/动力条件削弱,持续支持降水系统发展。最后,通过考察雷达反射率的不同同化方案,发现同化反演水凝物或者估计水汽均能改善模式降水预报性能,但是同化估计水汽对降水预报性能的改善更为明显,联合使用两方案能同时对水凝物分布、热力场等进行调整,可提高模式降水预报性能。   相似文献   

11.
The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales.
Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.  相似文献   

12.
设计了一个以MM5模式为基础的遗传算法同化系统,并对一次暴雨过程进行了实际降水的模拟,通过对比遗传同化和伴随同化的降水预报效果,对遗传算法同化系统的同化性能进行验证。试验结果表明,遗传算法与四维变分相结合的同化系统能有效地改善模式的初始场,使MM5模式要素预报和降水预报的准确率得到提高。  相似文献   

13.
To improve the accuracy of short-term(0–12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System(HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting(WRF-ARW)model and the Advanced Regional Prediction System(ARPS) three-dimensional variational data assimilation(3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station(AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting(QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6–9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score(FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.  相似文献   

14.
The existence of outliers can seriously influence the analysis of variational data assimilation. Quality control allows us to effectively eliminate or absorb these outliers to produce better analysis fields. In particular, variational quality control(VarQC) can process gray zone outliers and is thus broadly used in variational data assimilation systems. In this study,governing equations are derived for two VarQC algorithms that utilize different contaminated Gaussian distributions(CGDs): Gaussian plus flat distribution and Huber norm distribution. As such, these VarQC algorithms can handle outliers that have non-Gaussian innovations. Then, these VarQC algorithms are implemented in the Global/Regional Assimilation and PrEdiction System(GRAPES) model-level three-dimensional variational data assimilation(m3 DVAR) system. Tests using artificial observations indicate that the VarQC method using the Huber distribution has stronger robustness for including outliers to improve posterior analysis than the VarQC method using the Gaussian plus flat distribution. Furthermore,real observation experiments show that the distribution of observation analysis weights conform well with theory,indicating that the application of VarQC is effective in the GRAPES m3 DVAR system. Subsequent case study and longperiod data assimilation experiments show that the spatial distribution and amplitude of the observation analysis weights are related to the analysis increments of the mass field(geopotential height and temperature). Compared to the control experiment, VarQC experiments have noticeably better posterior mass fields. Finally, the VarQC method using the Huber distribution is superior to the VarQC method using the Gaussian plus flat distribution, especially at the middle and lower levels.  相似文献   

15.
With available high-resolution ocean surface wind vectors retrieved from the U.S. Naval Research Laboratorys WindSat on Coriolis, the impact of these data on genesis and forecasting of tropical storm Henri is examined using the non-hydrostatic, fifth-generation mesoscale model (MM5) of Pennsylvania State University-National Center for Atmospheric Research plus its newly released three-dimensional variational data assimilation (3DVAR) system. It is shown that the assimilation of the WindSat-retrieved ocean surface wind vectors in the 3DVAR system improves the model initialization fields by introducing a stronger vortex in the lower troposphere. As a result, the model reproduces the storm formation and track reasonably close to the observations. Compared to the experiment without the WindSat surface winds, the WindSat assimilation reduced an error between the model simulated track and observations of more than 80 km and also improved the storm intensity by nearly 2 hPa. It suggests that these data could provide early detection and prediction of tropical storms or hurricanes.  相似文献   

16.
In an effort to assess the impact of the individual component of meteorological observations (ground-based GPS precipitable water vapor,automatic and conventional meteorological observations) on the torrential rain event in 4-5 July 2000 in Beijing (with the 24-h accumulated precipitation reaching 240 mm),24-h observation system experiments are conducted numerically by using the MM5/WRF 3DVAR system and the nonhydrostatic MM5 model.Results indicate that,because the non-conventional GPS observations are directly assimilated into the initial analyses by 3DVAR system,better initial fields and 24-h simulation for the severe precipitation event are achieved than those under the MM5/Litter_R objective analysis scheme. Further analysis also shows that the individual component of meteorological observation network plays their special positive role in the improvement of initial field analysis and forecasting skills.3DVAR scheme with or without radiosonde and pilot observation has the most significant influence on numerical simulation,and automatic and conventional surface meteorological observations rank second.After acquiring the supplement information from the other meteorological observations,the ground-based GPS precipitable water vapor data can more obviously reflect initial field assimilation and precipitation forecast.By incorporating the ground- based GPS precipitable water vapor data into the 3DVAR analyses at the initial time,the threat scores (TS) with thresholds of 1,5,10,and 20 mm are increased by 1%-8% for 6- and 24-h accumulated precipitation observations,respectively.This work gives one helpful example that assesses the impact of individual component of the existing meteorological observation network on the high influence weather event using 3DVAR numerical system.  相似文献   

17.
梅雨锋暴雨研究中的四维变分同化试验   总被引:1,自引:0,他引:1  
作者利用PSU/NCAR的MM5数值预报模式及其伴随模式, 以中国1999年6月23日~24日的一次梅雨锋暴雨过程为个例, 根据气象要素与同化窗口之间的配置差异, 作了3组变分同化试验.试验结果表明: 4DVAR方法在提高梅雨锋暴雨的数值预报水平上具有重要的作用.  相似文献   

18.
利用新一代中尺度预报模式WRFV3.6及其三维变分同化系统(WRF-3DVAR),对2012年7月21日北京地区的一次暴雨过程进行多普勒天气雷达径向风和反射率的同化试验研究,检验和探讨高时空分辨率多普勒天气雷达资料在改进模式初始场及提高对暴雨过程预报的准确率等方面的应用效果及意义。结果发现雷达资料同化能在初始场中加入反映产生降水的低层风场辐合的动力和锋前暖区充足的水汽条件的物理信息,可以在模式积分开始后改善初始场中水汽和风的分布,较快地模拟出局地对流系统的发生、发展,改善由于中尺度观测资料不足而造成的模式初始场里中尺度信息缺乏的问题。径向速度的同化增加了中尺度信息,对初始流场的调整较为显著,侧重于改进风场。而雷达反射率资料的同化对初始温、湿度场和强回波位置的调整更明显,侧重于改进湿度场。累计降水的预报结果显示,同化径向风资料对雨带的位置、范围有较好的改进,同化雷达反射率资料对暴雨强度的预报有明显的改善。通过降水ETS评分发现,同化常规观测试验相对于控制实验,对于5、15 mm和25 mm降水评分能增加0.1左右,径向风同化试验能增加0.2左右,反射率同化试验能增加0.3左右,而径向风加反射率试验增加的评分介于0.2~0.3。雷达资料对于提高定量降水预报的精确度有着重要作用。  相似文献   

19.
传统变分同化方法中使用各向同性和均质的背景场误差协方差,忽略了背景场误差协方差的天气系统依赖性,而在变分框架下引入集合流依赖的背景场误差协方差还需要额外的集合预报.为在变分同化中引入更合理的背景场误差协方差,通过引入云指数构建"云依赖"背景场误差协方差,提出了一种云依赖背景场误差协方差的同化方案,并应用于雷达等多源观测...  相似文献   

20.
A heavy rainfall event along the mei-yu front during 22-23 June 2002 was chosen for this study. To assess the impact of the routine and additional IOP (intensive observation period) radiosonde observations on the mesoscale heavy rainfall forecast, a series of four-dimensional variational (4DVAR) data assimilation and model simulation experiments was conducted using nonhydrostatic mesoscale model MM5 and the MM5 4DVAR system. The effects of the intensive observations in the different areas on the heavy rainfall forecast were also investigated. The results showed that improvement of the forecast skill for mesoscale heavy rainfall intensity was possible from the assimilation of the IOP radiosonde observations. However,the impact of the IOP observations on the forecast of the rainfall pattern was not significant. Initial conditions obtained through the 4DVAR experiments with a 12-h assimilation window were capable of improving the 24-h forecast. The simulated results after the assimilation showed that it would be best to perform the intensive radiosonde observations in the upstream of the rainfall area and in the moisture passageway area at the same time. Initial conditions created by the 4DVAR led to the low-level moisture convergence over the rainfall area, enhanced frontogenesis and upward motion within the mei-yu front,and intensified middle- and high-level unstable stratification in front of the mei-yu front. Consequently,the heavy rainfall forecast was improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号