首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Daily global solar irradiation (R s) is one of the main inputs in environmental modeling. Because of the lack of its measuring facilities, high-quality and long-term data are limited. In this research, R s values were estimated based on measured sunshine duration and cloud cover of our synoptic meteorological stations in central and southern Iran during 2008, 2009, and 2011. Clear sky solar irradiation was estimated from linear regression using extraterrestrial solar irradiation as the independent variable with normalized root mean square error (NRMSE) of 4.69 %. Daily R s was calibrated using measured sunshine duration and cloud cover data under different sky conditions during 2008 and 2009. The 2011 data were used for model validation. According to the results, in the presence of clouds, the R s model using sunshine duration data was more accurate when compared with the model using cloud cover data (NRMSE = 11. 69 %). In both models, with increasing sky cloudiness, the accuracy decreased. In the study region, more than 92 % of sunshine durations were clear or partly cloudy, which received close to 95 % of total solar irradiation. Hence, it was possible to estimate solar irradiation with a good accuracy in most days with the measurements of sunshine duration.  相似文献   

2.
Cloud cover information is used alongside weather forecasts in various fields of research; however, ground observation of cloud cover is conducted by human observers, a method that is subjective and has low temporal and spatial resolutions. To address these problems, we have developed an improved algorithm to calculate cloud cover using sky image data obtained with Skyviewer equipment. The algorithm uses a variable threshold for the Red Blue Ratio (RBR), determined from the frequency distribution of the Green Blue Ratio (GBR), to calculate cloud cover more accurately than existing algorithms. To verify the accuracy of the algorithm, we conducted daily, monthly, seasonal, and yearly statistical analyses of human observations of cloud cover, obtained every hour from 0800 to 1700 Local Standard Time (LST) for the entirety of 2012 at the Gangwon Regional Meteorological Administration (GRMA), Korea. A case study compared daily images taken at 1200 LST in each season with pixel images of cloud cover calculated by our improved algorithm. The selected cases yielded a high correlation coefficient of 0.93 with the GRMA data. A monthly case study showed low root mean square errors (RMSEs) and high correlation coefficients (Rs) for December (RMSE = 1.64 tenths and R = 0.92) and August (RMSE = 1.43 tenths and R = 0.91). In addition, seasonal cases yielded a high correlation of 0.9 and 87% consistency within ± 2 tenths for winter and a correlation of 0.83 and 82% consistency for summer, when cases of cloud-free or overcast conditions are frequent. Annual analyses showed that the bias of GRMA and Skyviewer cloud cover data for 2012 was -0.36 tenth, and the RMSE was 2.12 tenths, with the GRMA data showing more cloud cover. Considering that the GRMA and Skyviewer data were gathered at different spatial locations, GRMA and Skyviewer data were well correlated (R = 0.87) and showed a consistency of 80% in their cloud cover data (consistent within ± 2 tenths).  相似文献   

3.
An integrated use of independent palaeoclimatological proxy techniques that reflect different components of the climate system provides a potential key for functional analysis of past climate changes. Here we report a 10,000 year quantitative record of annual mean temperature (T ann), based on pollen-climate transfer functions and pollen-stratigraphical data from Lake Flarken, south-central Sweden. The pollen-based temperature reconstruction is compared with a reconstruction of effective humidity, as reflected by a δ18O record obtained on stratigraphy of lacustrine carbonates from Lake Igelsjön, c. 10 km from Lake Flarken, which gives evidence of pronounced changes in effective humidity. The relatively low T ann, and high effective humidity as reflected by a low evaporation/inflow ratio suggest a maritime early Holocene climate (10,000–8,300 cal year BP), seemingly incompatible with the highly seasonal solar insolation configuration. We argue that the maritime climate was due to the stronger-than-present zonal flow, enhanced by the high early Holocene sea-surface temperatures in the North Atlantic. The maritime climate mode was disrupted by the abrupt cold event at 8,200 cal year BP, followed at 8,000 cal year BP by a stable Holocene Thermal Maximum. The latter was characterized by T ann values about 2.5°C higher than at present and markedly dry conditions, indicative of stable summer-time anti-cyclonic circulation, possibly corresponding with modern blocking anticyclonic conditions. The last 4,300 year period is characterized by an increasingly cold, moist, and unstable climate. The results demonstrate the value of combining two independent palaeoclimatic proxies in enhancing the reliability, generality, and interpretability of the palaeoclimatic results. Further methodological refinements especially in resolving past seasonal climatic contrasts are needed to better understand the role of different forcing factors in driving millennial-scale climate dynamics.  相似文献   

4.
The study evaluates statistical downscaling model (SDSM) developed by annual and monthly sub-models for downscaling maximum temperature, minimum temperature, and precipitation, and assesses future changes in climate in the Jhelum River basin, Pakistan and India. Additionally, bias correction is applied on downscaled climate variables. The mean explained variances of 66, 76, and 11 % for max temperature, min temperature, and precipitation, respectively, are obtained during calibration of SDSM with NCEP predictors, which are selected through a quantitative procedure. During validation, average R 2 values by the annual sub-model (SDSM-A)—followed by bias correction using NCEP, H3A2, and H3B2—lie between 98.4 and 99.1 % for both max and min temperature, and 77 to 85 % for precipitation. As for the monthly sub-model (SDSM-M), followed by bias correction, average R 2 values lie between 98.5 and 99.5 % for both max and min temperature and 75 to 83 % for precipitation. These results indicate a good applicability of SDSM-A and SDSM-M for downscaling max temperature, min temperature, and precipitation under H3A2 and H3B2 scenarios for future periods of the 2020s, 2050s, and 2080s in this basin. Both sub-models show a mean annual increase in max temperature, min temperature, and precipitation. Under H3A2, and according to both sub-models, changes in max temperature, min temperature, and precipitation are projected as 0.91–3.15 °C, 0.93–2.63 °C, and 6–12 %, and under H3B2, the values of change are 0.69–1.92 °C, 0.56–1.63 °C, and 8–14 % in 2020s, 2050s, and 2080s. These results show that the climate of the basin will be warmer and wetter relative to the baseline period. SDSM-A, most of the time, projects higher changes in climate than SDSM-M. It can also be concluded that although SDSM-A performed well in predicting mean annual values, it cannot be used with regard to monthly and seasonal variations, especially in the case of precipitation unless correction is applied.  相似文献   

5.
Hydrological processes depend directly on climate conditions [e.g., precipitation, potential evapotranspiration (PE)] based on the water balance. This paper examines streamflow datasets at four hydrological stations and meteorological observations at 79 weather stations to reveal the streamflow changes and underlying drivers in four typical watersheds (Meigang, Saitang, Gaosha, and Xiashan) within Poyang Lake Basin from 1961 to 2000. Most of the less than 90th percentile of daily streamflow in each watershed increases significantly at different rates. As an important indicator of the seasonal changes in the streamflow, CT (the timing of the mass center of the streamflow) in each watershed shows a negligible change. The annual streamflow in each watershed increases at different rates, with a statistically significant trend (at the 5 % level) of 9.87 and 7.72 mm year?1, respectively, in Meigang and Gaosha watersheds. Given the existence of interactions between precipitation and PE, the original climate elasticity of streamflow can not reflect the relationship of streamflow with precipitation and PE effectively. We modify this method and find the modified climate elasticity to be more accurate and reasonable using the correlation analysis. The analyses from the modified climate elasticity in the four watersheds show that a 10 % increase (decrease) in precipitation will increase (decrease) the annual streamflow by 14.1–16.3 %, while a 10 % increase (decrease) in PE will decrease (increase) the annual streamflow by ?10.2 to ?2.1 %. In addition, the modified climate elasticity is applied to estimate the contribution of annual precipitation and PE to the increasing annual streamflow in each watershed over the past 40 years. Our result suggests that the percentage attribution of the increasing precipitation is more than 59 % and the decreasing in PE is less than 41 %, indicating that the increasing precipitation is the major driving factor for the annual streamflow increase for each watershed.  相似文献   

6.
In this study, the decomposed fast and slow responses of clouds to an abruptly quadrupled CO2 concentration (approximately 1139 ppmv) in East Asia (EA) are obtained quantitatively by using a general circulation model, BCC–AGCM2.0. Our results show that in the total response, the total cloud cover (TCC), low cloud cover (LCC), and high cloud cover (HCC) all increased north of 40°N and decreased south of 40°N except in the Tibetan Plateau (TP). The mean changes of the TCC, LCC, and HCC in EA were –0.74%, 0.38%, and –0.38% in the total response, respectively; 1.05%, –0.03%, and 1.63% in the fast response, respectively; and –1.79%, 0.41%, and –2.01% in the slow response, respectively. By comparison, we found that changes in cloud cover were dominated by the slow response in most areas in EA due to the changes in atmospheric temperature, circulation, and water vapor supply together. Overall, the changes in the cloud forcing over EA related to the fast and slow responses were opposite to each other, and the final cloud forcing was dominated by the slow response. The mean net cloud forcing (NCF) in the total response over EA was –1.80 W m–2, indicating a cooling effect which partially offset the warming effect caused by the quadrupled CO2. The total responses of NCF in the TP, south China (SC), and northeast China (NE) were –6.74 W m–2, 6.11 W m–2, and –7.49 W m–2, respectively. Thus, the local effects of offsetting or amplifying warming were particularly obvious.  相似文献   

7.
利用全天空数字图像对北京上空云况分布特征的试验分析   总被引:3,自引:3,他引:3  
霍娟  吕达仁 《气象科学》2005,25(3):238-243
利用最新获取的近两年北京上空全天空数字图像资料对云况分布做统计分析,以获得云的分布特征。工作中将图像分为9个扇区和16个环区分别进行分析,从结果看,无云(云量<1)与全天空有云天气(云量>9)情况明显占优,平均各占总量的36%,46%。除去系统误差及计算所带来的误差发现,两年中北京上空多以晴好天气(包含薄卷云)和阴天为主。上空西北部云的分布略显偏多,头顶上空云的出现概率较其他位置低,并有随天顶角增大概率增大的趋势。  相似文献   

8.
Urban areas are especially vulnerable to high temperatures, which will intensify in the future due to climate change. Therefore, both good knowledge about the local urban climate as well as simple and robust methods for its projection are needed. This study has analysed the spatio-temporal variance of the mean nocturnal urban heat island (UHI) of Hamburg, with observations from 40 stations from different suppliers. The UHI showed a radial gradient with about 2 K in the centre mostly corresponding to the urban densities. Temporarily, it has a strong seasonal cycle with the highest values between April and September and an inter-annual variability of approximately 0.5 K. Further, synoptic meteorological drivers of the UHI were analysed, which generally is most pronounced under calm and cloud-free conditions. Considered were meteorological parameters such as relative humidity, wind speed, cloud cover and objective weather types. For the stations with the highest UHI intensities, up to 68.7 % of the variance could be explained by seasonal empirical models and even up to 76.6 % by monthly models.  相似文献   

9.
基于模糊纹理光谱的全天空红外图像云分类   总被引:5,自引:1,他引:5       下载免费PDF全文
为了对全天空红外测云系统获得的红外图像进行云类自动识别, 提出了基于模糊纹理光谱结合云物理属性的全天空云类识别方法。首先根据不同滤波窗口的模糊纹理光谱图像特征, 确定了滤波窗口大小, 然后通过分析不同天空类型下的FUTS谱 (fuzzy uncertainty texture spectrum) 以及同一种天空类型下的FUTS谱, 考察了FUTS进行云类识别的适用性, 最后利用最小距离分类法和云基本物理属性对全天空红外图像进行了分类测试。在200个测试样本中, 层状云、积云、高积云、卷云和晴空的识别率分别为100%, 100%, 90%, 100%, 100%, 平均识别率达到98%。基于模糊纹理光谱的云分类算法对单一云空具有很好的分类效果, 可进一步应用于全天空红外图像的云分类识别。  相似文献   

10.
Spatial models of present-day mountain permafrost probability were perturbed to examine potential climate change impacts. Mean annual air temperature (MAAT) changes were simulated by adjusting elevation in the models, and cloud cover changes were examined by altering the partitioning of direct beam and diffuse radiation within the calculation for potential incoming solar radiation (PISR). The effects of changes in MAAT on equilibrium permafrost distribution proved to be more important than those due to cloud cover. Under a ?2 K scenario (approximating Little Ice Age conditions), permafrost expanded into an additional 22?C43% of the study areas as zonal boundaries descended by 155?C290 m K???1. Under warming scenarios, permafrost probabilities progressively declined and zonal boundaries rose in elevation. A MAAT change of +5 K, caused two of the areas to become essentially permafrost-free. The absolute values of these predictions were affected up to ±10% when lapse rates were altered by ±1.5 K km???1 but patterns and trends were maintained. A higher proportion of diffuse radiation (greater cloud cover) produced increases in permafrost extent of only 2?C4% while decreases in the diffuse radiation fraction had an equal but opposite effect. Notwithstanding the small change in overall extent, permafrost probabilities on steep south-facing slopes were significantly impacted by the altered partitioning. Combined temperature and PISR partitioning scenarios produced essentially additive results, but the impact of changes in the latter declined as MAAT increased. The modelling illustrated that mountain permafrost in the discontinuous zone is sensitive spatially to long-term climate change and identified those areas where changes may already be underway following recent atmospheric warming.  相似文献   

11.
Under cloudy conditions at the Gosan Climate Observatory (GCO), Korea, we observed distinct new particle formation and growth (NPF) events from simultaneous co-located measurements of aerosol and cloud profiles, cloud cover, shortwave radiation, and the number concentration and size distribution of aerosols. The high frequency of NPF was observed at GCO under decreased downwelling solar radiation caused by clouds. Although we observed about 15 and 40 % decreases in downwelling surface shortwave radiations, in the presence of thick mid-level (low-level) clouds, on January 28 and 30, 2012, respectively, distinct NPFs with a growth rate of 3.3 (3.9) nm h?1 were observed. We examined a 4-year series (May 2008 to April 2012) of continuous measurements of the size distribution of aerosol numbers and visually observed cloud cover. We found that approximately 13 % (i.e., 35 days out of 280 days) of total NPF events were observed under cloud-free conditions (i.e., cloud cover of 0/10). About 20 % (i.e., 57 days out of 280 days) of total NPF events occurred under mostly overcast conditions (i.e., cloud cover of 9/10–10/10). Although NPF events occurring under cloudy conditions were also found elsewhere, the frequency of NPF occurring at GCO seems much higher. The average value of relative humidity for the strong-NPF event days is lower than that of the weak and non-NPF event days for all cloud categories. No significant difference in the condensation sink was found among strong-, weak-, and non-NPF days, but the condensation sink showed a slight decreasing tendency with increasing cloudiness. Further investigations on precursor gases and preexisting aerosols under cloudy conditions are needed.  相似文献   

12.
Based on the NOAA's Advanced Very High Resolution Radiometer(AVHRR) Pathfinder Atmospheres Extended(PATMOS-x) monthly mean cloud amount data, variations of annual and seasonal mean cloud amount over the Yangtze River Delta(YRD), China were examined for the period 1982–2006 by using a linear regression analysis. Both total and high-level cloud amounts peak in June and reach minimum in December, mid-level clouds have a peak during winter months and reach a minimum in summer, and lowlevel clouds vary weakly throughout the year with a weak maximum from August to October. For the annual mean cloud amount, a slightly decreasing tendency(–0.6% sky cover per decade) of total cloud amount is observed during the studying period, which is mainly due to the reduction of annual mean high-level cloud amount(–2.2% sky cover per decade). Mid-level clouds occur least(approximately 15% sky cover) and remain invariant, while the low-level cloud amount shows a significant increase during spring(1.5% sky cover per decade) and summer(3.0% sky cover per decade). Further analysis has revealed that the increased low-level clouds during the summer season are mainly impacted by the local environment. For example,compared to the low-level cloud amounts over the adjacent rural areas(e.g., cropland, large water body, and mountain areas covered by forest), those over and around urban agglomerations rise more dramatically.  相似文献   

13.
Tazhong station, located at the hinterland of the Taklimakan Desert in northwest China, experiences frequent dusty weather events during spring and summer seasons (its dusty season) caused by unstable stratified atmosphere, abundant sand source and strong low-level wind. On average, it has 246.2 dusty days each year, of which 16.2 days are classified as sand and dust storm days. To better understand the characteristic of solar ultraviolet (UV) radiation and factors influencing its variations under such an extreme environment, UV radiation data were collected continuously from 2007 to 2011 at Tazhong station using UVS-AB-T radiometer by Kipp and Zonen. This study documents observational characteristics of the UV radiation variations observed during the five-year period. Monthly UV radiation in this region varied in the range of 14.1–37.8 MJ m?2 and the average annual amount was 320.7 MJ m?2. The highest value of UV radiation occurred in June (62.5 W m?2) while the lowest one in December (29.3 W m?2). It showed a notable diurnal cycle, with peak value at 12:00–13:00 LST. Furthermore, its seasonal variation exhibited some unique features, with averaged UV magnitude showing an order of summer > spring > autumn > winter. The seasonal values were 37.0, 29.1, 24.9 and 15.9 MJ m?2, respectively. In autumn and winter, its daily variations were relatively weak. However, significant daily variations were observed during spring and summer associated with frequent dust weather events occurring in the region. Further analysis showed that there was a significant correlation between the UV radiation and solar zenith angle under different weather conditions. Under the same solar zenith angle, UV radiation was higher during clear days while it was lower in sand and dust storm days. Our observations showed that there was a negative correlation between UV radiation and ozone, but such a relationship became absent in dusty days. The UV radiation was reduced by 6 % when cloud amount was 1–4 oktas, by 12 % when the cloud amount was 5–7 oktas, and by 24 % when the cloud amount was greater than 8 oktas. The relative reduction of UV radiation reached 26, 38, and 45 % in dust day, blowing sand day and sand and dust storm day, respectively. The results revealed that decrease in UV radiation can be attributed to cloud coverage and dust aerosols. Moreover, the reduction of UV radiation caused by dust aerosols was about 2–4 times greater than that caused by cloud coverage. These observational results are of value for improving our understanding of processes controlling UV radiation over sand desert and developing methods for its estimation and prediction.  相似文献   

14.
This study intends to disclose orographic effects on climate and climatic impacts on hydrological regimes in Qinling Mountains under global change background. We integrate a meteorological model (MM5 model, PSU/NCAR, 2005) and a hydrological model (SWAT model, 2005) to couple hydrological dynamic with climate change in Qinling Mountains. Models are calibrated and validated based on the simulation of different combined schemes. Following findings were achieved. Firstly, Qinling Mountains dominantly influence climate, and hydrological process in Weihe River and upper Hanjiang River. Results show that Qinling Mountains lead to a strong north–south gradient precipitation distribution over Qinling Mountains due to orographic effects, and it reduces precipitation from 10–25 mm (December) to 55–80 mm (August) in Weihe River basin, and adds 25–50 mm (December) or 65–112 mm (August) in upper Hanjiang River basin; evapotranspiration (ET) decrease of 21% in Weihe River (August) and increase 10.5% in upper Hanjiang River (July). The Qinling Mountains reduce water yields of 23.5% in Weihe River, and decrease of 11.3% in upper Hanjiang River. Secondly, climate change is responsible for the changes of coupling effects of rainfall, land use and cover, river flow and water resources. It shows that average temperature significantly increased, and precipitation substantially reduced which leads to hydrological process changed greatly from 1950 to 2005: temperature increased and precipitation decreased, climate became drier in the past two decades (1980–2005), high levels of precipitation exists in mid-1950, mid-1970, while other studied periods are in low level states. The inter-annual variation in water yield correlates with surface runoff with an R 2 value of 0.63 (Weihe River) and 0.87 (upper Hanjiang River). It shows that variation of annual precipitation was smaller than that of seasonal precipitation.  相似文献   

15.
A Regional Climate Chemistry Modeling System that employed empirical parameterizations of aerosol-cloud microphysics was applied to investigate the spatial distribution, radiative forcing (RF), and climate effects of black carbon (BC) over China. Results showed high levels of BC in Southwest, Central, and East China, with maximum surface concentrations, column burden, and optical depth (AOD) up to 14 μg?m?3, 8 mg?m?2, and 0.11, respectively. Black carbon was found to result in a positive RF at the top of the atmosphere (TOA) due to its direct effect while a negative RF due to its indirect effect. The regional-averaged direct and indirect RF of BC in China was about +0.81 and ?0.95 W?m?2, respectively, leading to a net RF of ?0.15 W?m?2 at the TOA. The BC indirect RF was larger than its direct RF in South China. Due to BC absorption of solar radiation, cloudiness was decreased by 1.33 %, further resulting in an increase of solar radiation and subsequently a surface warming over most parts of China, which was opposite to BC’s indirect effect. Further, the net effect of BC might cause a decrease of precipitation of ?7.39 % over China. Investigations also suggested large uncertainties and non-linearity in BC’s indirect effect on regional climate. Results suggested that: (a) changes in cloud cover might be more affected by BC’s direct effect, while changes in surface air temperature and precipitation might be influenced by BC’s indirect effect; and (b) BC second indirect effect might have more influence on cloud cover and water content compared to first indirect effect. This study highlighted a substantial role of BC on regional climate changes.  相似文献   

16.
Probabilistic climate data have become available for the first time through the UK Climate Projections 2009, so that the risk of change in tree growth can be quantified. We assessed the drought risk spatially and temporally using drought probabilities calculated from the weather generator data and tree species vulnerabilities using Ecological Site Classification model across Britain. We evaluated the drought impact on the potential yield class of three major tree species (Picea sitchensis, Pinus sylvestris, and Quercus robur), which cover around 59 % (400,700 ha) of state-managed forests, across the lowlands and uplands. We show that drought impacts result mostly in reduced tree growth over the next 80 years when using B1, A1B, and A1FI IPCC emissions scenarios, but varied spatially. We found a maximum reduction of 94 % but also a maximum increase of 56 % in potential stand yield class in the 2080s from the baseline climate (1961–1990). Furthermore, potential production over the state-managed forests for all three species in the 2080s is estimated to decrease due to drought by 42 % in the lowlands and by 32 % in the uplands in comparison to the baseline climate. Our results reveal that potential tree growth and forest production on the state-managed forests in Britain is likely to reduce, and indicate where and when adaptation measures are required. Moreover, this paper demonstrates the value of probabilistic climate projections for an important economic and environmental sector.  相似文献   

17.
基于红外实时阈值的全天空云量观测   总被引:1,自引:1,他引:1       下载免费PDF全文
红外测温传感器在旋转平台控制下定时对全天空进行扫描,拼接全天空红外辐射亮温图像。利用天空中的云点与非云点在红外波段中表现出的不同特性,考虑不同仰角方向天空中云点与非云点的温度差异,结合地面环境参数,实时拟合天顶到水平区间内晴空时刻的温度阈值函数,利用阈值分割方式得出全天空云分布及云量信息。该方法可以有效减少地面环境参数及太阳光照对云图的影响,能够全天实时运行。将利用该方法获取的数据分别与人工观测数据及典型天气条件下可见光测云结果进行对比,结果表明该系统在云量观测方面具有一定的先进性和准确性。  相似文献   

18.
Russell Seitz 《Climatic change》2011,105(3-4):365-381
Because air?Cwater and water?Cair interfaces are equally refractive, cloud droplets and microbubbles dispersed in bodies of water reflect sunlight in much the same way. The lifetime of sunlight-reflecting microbubbles, and hence the scale on which they may be applied, depends on Stokes Law and the influence of ambient or added surfactants. Small bubbles backscatter light more efficiently than large ones, opening the possibility of using highly dilute micron-radius hydrosols to substantially brighten surface waters. Such microbubbles can noticeably increase water surface reflectivity, even at volume fractions of parts per million and such loadings can be created at an energy cost as low as J m???2 to initiate and mW m???2 to sustain. Increasing water albedo in this way can reduce solar energy absorption by as much as 100 W m???2, potentially reducing equilibrium temperatures of standing water bodies by several Kelvins. While aerosols injected into the stratosphere tend to alter climate globally, hydrosols can be used to modulate surface albedo, locally and reversibly, without risk of degrading the ozone layer or altering the color of the sky. The low energy cost of microbubbles suggests a new approach to solar radiation management in water conservation and geoengineering: Don??t dim the Sun; Brighten the water.  相似文献   

19.
利用玛曲国家基本气象观测站1971—2010年的总云量、低云量等观测数据,用线性趋势分析、小波分析等方法对玛曲地区近40 a总云量、低云量的月、季、年际、年代际变化和周期性变化特征进行分析。研究表明,近40 a来,平均总云量距平在-0.1%~0.1%之间,保持了很好的稳定性,平均低云量以4.0%/10 a的速率递增;春、夏、秋季低云量呈现出不同程度的增多趋势,夏季增加趋势非常明显达7.3%/10 a。平均总云量周期变化不明显,平均低云量有明显的6~7 a的周期。玛曲地区在总云量保持稳定的情况下低云量不断增多,夏季低云量的增多趋势非常明显,且积雨云的增多是主要特征,是对玛曲草原气候变化的一种响应机制,反映出在气候变暖的大背景下,玛曲草原对流性天气活动频繁。  相似文献   

20.
全天空成像仪(total sky imager 440,TSI-440)可以实现白天全天空云量的持续自动监测,时空分辨率较高,得到的云量计算结果更精确.首先介绍了TSI-440的基本原理和资料格式,并基于太湖地区2008年5-10月的TSI-440资料及无锡站地面观测资料,采用统计方法详细地分析了不同天气情况下图像的成像特征及云量的计算误差.结果发现:图像的成像特征与能见度密切相关,红蓝比值随着能见度的减小而增大.另外,仪器在处理阴天图像及复杂天空(多云)图像时,易造成一定的云量计算误差.针对上述问题,本文通过直方图分析,重新选定了红蓝比阈值(晴空点阈值0.62,云点阈值0.66),基于新阈值计算的云量结果较仪器自带的处理结果更为准确,减小了因天气状况不同而产生的云量计算误差.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号