首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coal mining is bound to destroy natural hydrochemical environment. However, in the concealed coal field in North China, the hydrogeochemical characteristics of discharge aquifers under mining-induced disturbance has not been researched from view of space and time, and the true hydrochemical feature and spatio-temporal evolution mechanism could not be well revealed. For this reason, taking the Linhuan coal-mining district as study area, conventional ions and trace elements are studied by principal component analysis (PCA). The results show that main formations of hydrochemical composition are lixiviation and dissolution for the first principal component and cation exchange and absorption for the second principal component, respectively. In general, the main formation of hydrochemical composition in the unconsolidated pore aquifer is lixiviation and dissolution. The main formation in the coal and sandstone cranny aquifer is cation exchange and absorption, which are gradually weakened with lixiviation and dissolution. The main formation in the karst aquifer is lixiviation and dissolution, which are gradually strengthened with cation exchange and absorption. The research provides theoretical foundation for the water-inrush precaution and the protection and utilization of water resources in concealed coal field in North China.  相似文献   

2.
常州市过量开采第Ⅱ承压含水层的水使水位大幅度下降,造成含水砂层压密和粘性土层固结而导致地面沉降。试验资料表明该区粘性土层的压缩性较低,它们的压密主要是由主固结阶段完成的。视压榨液,浸提液成分和含水层多年水质的变化,以及抽水时水质与氚量资料说明粘性土层释水在造成本区地面沉降中起着相当重要的作用。这种条件下,用对含水层水化学成分的检测来监视地面沉降的发生、发展是一个经济可靠的方法。  相似文献   

3.
This work investigated the freshening time and hydrochemical evolution of coastal groundwater in two brackish aquifers in Shenzhen, China. One was the brackish aquifer that resulted from heavy pumping, and the other was the aquifer reclaimed from the coastal sea. Freshening time and hydrochemical evolution of brackish aquifers were quantitatively evaluated using PHREEQC 2.0, a one-dimensional reactive-transport model. Freshening time was shown to mainly depend on pore water velocity, while the chemical composition of groundwater was determined by the cation exchange capacity of the aquifer. It was shown that after heavy pumping ceased, the freshening time for the original coastal aquifer ranged from 20 to over 80 years. While for the coastal reclaimed aquifer, the freshening time was from 85 to 140 years, which depended on the hydraulic conductivity of the fill materials in the reclaimed site. During aquifer freshening, groundwater evolved from Na–Cl type to Ca–Mg–HCO3 or Na–HCO3 type. A sensitivity analysis showed that the freshening time was most sensitive to the pore water velocity in the aquifer, while the groundwater chemical composition was most sensitive to the values of cation exchange capacity of the aquifer. As for the dispersivity, it had almost no effect on the freshening time and the chemical composition of groundwater.  相似文献   

4.
This paper describes the use of multivariate statistical analysis to trace hydrochemical evolution in a limestone terrain at Zagros region, Iran. The study area includes a deep confined aquifer, overlaid by an unconfined aquifer. The method involves the use of principal component analysis (PCA) to assess and evaluate the hydrochemical evolution based on chemical and isotope variables of 12 piezometers drilled in both the unconfined and confined aquifers. First PCA on all variables shows that water–rock interaction under different conditions with respect to the atmospheric CO2 is the main process responsible for chemical constituents. As a result, combinations of several ratios such as Ca/TDS, SO4/TDS and Mg/TDS with physico-chemical and isotope variables reveal different hydrochemical evolution trend in the aquifers. Second PCA on the selective samples and variables reveals that displacement of the unconfined samples from dry to wet season follows a refreshing trend towards river samples that is characterized by reducing electrical conductivity and increasing sulphate and tritium contents. However, the refreshing trend cannot be traced in the confined aquifer samples suggesting no recharge from river to the confined aquifer. Third PCA reveals that, chemical composition of water samples in the unconfined aquifer tends to have considerable difference from each other in the end of recharge period. In contrast, the confined aquifer samples have a tendency to show similar chemical composition during recharge period in comparison to end of dry period. This difference is caused by different mechanism of recharge in the unconfined aquifer (through the whole aquifer surface) and the confined aquifer (through the limited recharge area).  相似文献   

5.
The alluvial aquifer of the Guadalquivir River comprises shallow Quaternary deposits located in the central-eastern part of the Province of Jaén in southern Spain, where groundwater resources are used mainly for crop irrigation in an important agricultural area. In order to establish the baseline hydrochemical conditions and processes determining the groundwater quality, groundwater and river water samples were collected as part of an integrated investigation that coupled multivariate statistical analysis with hydrochemical methods to identify and interpret the groundwater chemistry of the aquifer system. Three main hydrochemical types (Mg–Ca–HCO3, Ca–Mg–SO4–HCO3–Cl and Na–Ca–Mg–Cl–SO4) were identified. Further interpretation, using R-mode principal components analysis (PCA) conducted with 13 hydrochemical variables, identified two principal components which explain ⅔ of the variance in the original data. In combination with the hydrochemical interpretation, mineralogical analyses of the aquifer sediment together with inverse geochemical modelling using NETPATH showed that dedolomitization (calcite precipitation and dolomite dissolution driven by gypsum dissolution) is the principal hydrochemical process controlling the regional groundwater chemistry. Other processes such as silicate weathering, ion exchange, mixing between river water and groundwater, and agricultural practices also affect the groundwater chemistry.  相似文献   

6.
针对地下水资源过量开采而出现的绿洲水文生态问题,以贺兰山西麓具有典型特征的内蒙古腰坝绿洲为研究对象,分开采期、非开采期对地下水进行系统取样分析,综合运用描述性统计、相关性分析、离子比例系数和Piper三线图示法,全面系统地研究了地下水水化学的时空变异特征与演变规律。研究结果表明:①季节变化对潜水和承压水水化学类型空间变异性影响较小,潜水水文化学性质受外界因素干扰较大,承压水受外界因素干扰较少;②蒸发浓缩、阳离子交换和人为混合是控制研究区潜水水质演变的主要水文化学过程;③潜水子系统总溶解固体较高,水化学类型变化也较复杂,主要从HCO3·SO4.Cl-Na·Mg·Ca型向Cl·SO4·HCO3-Mg·Na、Cl·SO4-Na·Mg型演化。承压水水化学类型比较单一,主要以低矿化度的HCO3-Na·Mg·Ca型为主。  相似文献   

7.
左文喆  任永强  杨豹  刘帅洲 《地球科学》2020,45(4):1427-1438
为了解沉积变质型铁矿床开采后矿区地下水化学特征的变化趋势,在充分掌握矿区含水系统划分和流动系统发育规律的基础上,通过对四含上、四含下、基岩含水层148个水样常规离子的相关性、水化学类型及公因子的分析,得出水化学类型分区和公因子得分等值线,将二者叠加,分析各含水层潜在的形成作用及其控制因素.研究结果表明,四含上以碳酸盐溶滤、污染、氧化作用为主;四含下以污染、溶滤、局部脱硫酸作用为主;基岩含水层以离子交换吸附、第四系水的混合、硅酸盐矿物的不全等溶解作用为主.除了背景因素外,矿山开采后的三维流场控制了基岩含水层的形成作用和原生水化学类型,影响了第四系含水层的局部形成作用,水化学类型分区界线明显移动.   相似文献   

8.
This article presents the difficulty in identifying the hydrochemical zoning of a semi-confined aquifer, characterised by a relative small spatial differentiation of groundwater chemistry. It is shown that multivariate statistical methods can be used for the recognition and interpretation of the groundwater chemistry distribution in an aquifer. The hydrochemical zonation caused by both natural and anthropogenic processes was identified using factor analyses in combination with a classical interpretation of the hydrogeological material. The interpretation of the groundwater chemistry allows both identification of the aquifer recharge mechanism and verification of the groundwater-flow system.  相似文献   

9.
临涣矿区底含水化学特征及其形成作用探讨   总被引:7,自引:2,他引:5  
阐述了临涣矿区开采前、后新生界底部含水层的水化学特征及其形成作用;提出了底含水化学成因模式。对矿井底含突水水源的准确判断及井筒破裂原因分析具有积极意义。   相似文献   

10.
A study of the hydrogeochemical processes in the Morsott-El Aouinet aquifer was carried out with the objective of identifying the geochemical processes and their relation with groundwater quality as well as to get an insight into the hydrochemical evaluation of groundwater. The high salinity coupled with groundwater level decline pose serious problems for current irrigation and domestic water supplies as well as future exploitation. A combined hydrogeologic and isotopic investigation have been carried out using chemical and isotopic data to deduce a hydrochemical evaluation of the aquifer system based on the ionic constituents, water types, hydrochemical facies and factors controlling groundwater quality. The ionic speciation and mineral dissolution/precipitation was calculated by WATEQF package software. The increase in salinity is related to the dissolution and/or precipitation processes during the water–rock interaction and to the cationic exchange reactions between groundwater and clay minerals. The isotopic analysis of some groundwater samples shows a similarity with the meteoric waters reflect their short residence time and a lowest evaporation phenomenon of infiltrated groundwater.  相似文献   

11.
同位素与水文地球化学方法在矿井突水水源判别中的应用   总被引:1,自引:0,他引:1  
通过对抚顺老虎台矿区各类水体的同位素及水化学特征研究,阐述了地表水与矿井各开采水平及73003#突水点的同位素和水化学特征及其相互关系,论证了矿井上覆白垩系砾岩含水层与73003#突水点的联系。研究表明:73003#突水点的同位素及水化学特征与地表水及其他开采水平差异较大,而与白垩系砾岩水的同位素及水化学特征相似。根据同位素、水化学特征及混合计算发现,突水点的水是白垩系地下水与第四系地下水的混合,且白垩系砾岩水占67%,占主导作用;矿井突水通道为活化的F1断层。  相似文献   

12.
江苏南通地下水补给源、水化学特征及形成机理   总被引:8,自引:0,他引:8  
在地下水的大规模开采条件下,江苏沿海一带,特别是南通许多地区的地下水一度出现咸化趋势,对区域水资源及环境产生了极大的影响,已成为制约生态环境建设和经济社会发展的重要因素.为查明地下水的补给来源、水化学特征和矿化度增高的机理,对南通地区深浅层地下水开展了野外调查取样.通过对各种水化学参数的讨论分析,系统地研究了该区地下水...  相似文献   

13.
The chemical and hydrodynamic characteristics of groundwater in deltaic regions are strongly influenced by the complex stratigraphy of these areas, caused by the continuously varying depositional environments associated with their recent hydrographic evolution. As a case study, the eastern sector of the Po River plain, northern Italy, has been investigated to understand the quality of the available groundwater resources. Based on the analysis of hydrochemical and isotopic data, the recharge characteristics, the groundwater residence time and the aquifer vulnerability are defined. The results show significant qualitative degradation of the unconfined aquifer due to the shallow depth to water, while in the underlying confined aquifer, a hydrochemical facies of Ca–HCO3 type prevails. The spatial variation and relationship between oxygen-18 and deuterium determine: firstly, hydraulic separation of the two hydrogeological units; secondly, direct infiltration of local precipitation to the unconfined aquifer; thirdly, the occurrence of waters originating in the Alps and locally from the Apennines, pervading the confined aquifer. The tritium results suggest local mixing between the superficial waters and the confined aquifer, occurring along the palaeo-river channels. This increases the pollution vulnerability of the confined hydrogeological unit within the plain, which is the only natural groundwater resource exploited for water supply.  相似文献   

14.
The hydrochemical response at springs in the drainage area of the Sierra del Rey—Los Tajos carbonate aquifer (province of Málaga, southern Spain) was monitored in order to determine the hydrogeological functioning of this aquifer. Analysis of the most important chemical parameters, using methodologies such as the temporal evolution of chemical components, principal component analysis and discriminant factorial analysis revealed that the high level of hydrochemical heterogeneity to be found in this discharge zone, in addition to particular spatial and temporal factors, is responsible for the mineralisation of the spring water. Sampling in karst systems where discharge occurs by several springs should take into account the hydrochemical variability of them; otherwise conclusions about the hydrological functioning of aquifers deduced from mixture of spring waters can be inaccurate.  相似文献   

15.
Groundwater with high fluoride content and water mixture patterns were studied in Serra Geral aquifer system (SGAS) using three aspects, principal component analysis (PCA), tectonic scenery and hydrochemical interpretation from 309 groundwater chemical data information from deep wells. A four-component model is suggested and explains 81% of total variance in the PCA. Six hydrochemical facies were identified. These facies suggest two different fluoride sources. Tectonic approach shows the relationship between defined hydrochemical facies and regional fracture control. The applied methodology reveals a minimum level to understand hydrochemical mixtures. The fluoride enrichment mechanisms into the groundwater are comprised in advance to guide the future uses of SGAS to the public supply.  相似文献   

16.
The study of groundwater impact on the hydrochemical characteristic of groundwater within Mullusi aquifer, west Iraq was conducted using the chemical analysis results in 14 production wells and groundwater levels observation in 17 water wells. The interpretation of hydrochemical phenomena related to ions sources was determined based on spatial analysis maps of various hydrochemical ratios using ArcGis software. The study also determined the relation of groundwater velocity and static water levels with the hydrochemical ratios using statistical application of Curve expert v1.3 program. The variations of ion concentration were examined using the statistical significant differences for chemical constituents of water within Mullusi aquifer. The impact of dewatering due to high exploitation was explained by increasing the magnesium and chloride concentrations and lowering static water levels. Magnesium and chloride concentration may reach their maximum limits for drinking at a groundwater level of 485 m asl. Accordingly, any decline in the water level of Mullusi aquifer that occurs from 4.5 to 30.5 m may cause deterioration in groundwater quality. This study modeled the effect of groundwater depletion on the groundwater quality in a theoretical equations approach.  相似文献   

17.
In order to determine the origin and the propagation mechanisms of highly concentrated chloride brines within the Quaternary aquifer system in the southern part of the Upper Rhine Graben, a combined isotope (H, O, C) and hydrochemical analysis was carried out. Groundwater recharge in this area is a complex system, consisting of local precipitation, river bank filtration, lateral flow from the Graben borders and, to a minor extent, an old Pleistocene component. In some areas, groundwater consists of up to 90% of recent bank filtrate, reaching depths down to at least 100 m. The isotopic and hydrochemical results show, that the elevated chloride concentrations in the Quaternary aquifer mainly result from leaky settling basins charged by the French potash mines until the mid 1970s. Input of natural brines coming from tertiary salt diapirs is of only minor importance. While infiltrating, the anthropogenic brines were strongly diluted by local river bank filtrate of the Rhine. Nevertheless, maximum chloride concentrations nowadays still reach some 10,000 mg/l at the base of the aquifer at a depth of more than 100 m below surface. The main volume of the brines is stored in the less permeable lower part of the quaternary sediments (Breisgau-Formation) whereas only a minor part is transported northwards with the rapid convective groundwater flow. Brines undergoing only dilution preserve their hydrochemical characteristics (NaCl-type). In contrast, brines recirculated from the Breisgau-Formation show a northwards increasing alteration through ion exchange processes. Potassium and sodium may be fixed in the fine grained aquifer material while calcium is set free into the groundwater. After a flow distance of about 12 km, complex hydraulic interactions between groundwater and surface waters lead to the rise of strongly diluted and hydrochemically altered brines with chloride contents up to maximum 700 mg/l. The presented case study is an example for a detailed analysis of a multi-component groundwater mixing system using combined isotope and hydrochemical methods. Furthermore, cation exchange is shown as a major process affecting the hydrochemical evolution of the young groundwater in the southern Upper Rhine Graben which is locally strongly polluted by chloride as a consequence of former potash mining.  相似文献   

18.
The most relevant controls on the water quality within the Cretaceous-Eocene limestone aquifer of the Keta Basin, Ghana, and the coastal sedimentary basin of Togo were assessed using Q-mode hierarchical cluster analysis (HCA) and mass-balance modelling. The pattern recognition technique of HCA was employed for partitioning hydrochemical data from a total of 65 surface and borehole samples from the study area into water groups. A spatial plot of the water groups consisting of samples from the limestone aquifer shows that the vast majority of samples belonging to the same group are located in close proximity to one another, suggesting the same processes and/or flow paths in the limestone aquifer system. Geochemical reaction models of selected water groups were constructed using PHREEQC-2. The hydrochemical compositions of the water groups and the mass-balance calculations indicate that the dominant processes and reactions responsible for the hydrochemical evolution in the system are: (1) carbonate equilibria, (2) silicate weathering reactions, (3) limited mixing with saline water, and (4) ion exchange. The combined use of HCA and mass-balance modelling has shown to be a useful approach in interpreting groundwater hydrochemistry in an area where large uncertainties exist in the understanding of the groundwater flow system.  相似文献   

19.
The alluvial aquifer of the Ghatprabha River comprises shallow tertiary sediment deposits underlain by peninsular gneissic complex of Archean age, located in the central–eastern part of the Karnataka in southern India. In order to establish the baseline hydrochemical conditions and processes determining the groundwater quality, groundwater samples were collected as part of an integrated investigation that coupled multivariate statistical analysis with hydrochemical methods to identify and interpret the groundwater chemistry of the aquifer system. Three main hydrochemical types (Ca–Mg–Cl, Ca–Mg–HCO3, and Na–SO4) were identified. Gibbs plots indicate that the evolution of water chemistry is influenced by water–rock interaction followed by evapotranspiration process. The results of factor analysis indicated the total variance explained by the extracted factor 79.9% and 87.1% for both pre- and post-monsoon, respectively. And other processes such as silicate weathering, ion exchange, and local anthropogenic activities affect the groundwater chemistry.  相似文献   

20.
苏春利  张雅  马燕华  刘文波 《地球科学》2019,44(9):2829-2838
岩溶地下水的水化学特征及其水岩作用过程研究对岩溶地下水合理开发利用和污染防治具有重要意义.综合利用水化学分析、主要离子比值、锶含量和87Sr/86Sr比值分析和反向水文地球化学模拟,深入分析了贵阳市地下水和地表水不同季节的水化学特征变化和水文地球化学演化过程.水化学特征分析表明,贵阳市地下水以HCO3·SO4-Ca型和HCO3-Ca·Mg型为主,水化学组成在季节和空间分布上存在一定的规律性变化,地表水与地下水的直接混合对地下水化学组成有一定的影响.锶同位素比值和水文地球化学反向模拟表明,地下水水化学组分主要受岩石风化作用的控制,以方解石和白云石为主的碳酸盐的溶解-沉淀作用以及硫酸盐和岩盐的溶解是控制研究区地下水水化学特征的重要过程,并受上覆孔隙含水层硅酸盐矿物水解的影响.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号