首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
2.
In the present paper revised distances of optical objects from radio sources of the 5C2 survey are given. A statistical investigation of the data is given for blue objects and galaxies by the statistical method of the “first neighbour”. The identification rate on blue plates for both the blue objects and galaxies amounts to about 40% out of the total number of 26 identifications. For every blue object and galaxy which are proposed as an identification the statistical reliability is given.  相似文献   

3.
Identifications of 5CI radio sources with optical objects are given. The identification rates amount to 44 and 30 per cent up to the limiting magnitude of about 21m in R and B, respectively. The objects are to about equal parts galaxies, blue starlike objects, and “unclassified objects” (presumably mostly faint galaxies and less pronounced blue objects). For every proposed identification a reliability and for the identification samples the reliability and the completeness are given. Some inaccuracies in the use of a statistical method, proposed in a previous paper, have been removed; two additional means of statistical treatment have been applied to discuss the data.  相似文献   

4.
A new sample of very powerful radio sources, defined from the Molonglo Reference Catalogue, was recently compiled by Best, Röttgering & Lehnert. These authors provided redshifts for 174 of the 178 objects in the sample, making the sample 98 per cent spectroscopically complete. Here, redshifts for three of the remaining galaxies are presented, confirming the optical identifications and raising the spectroscopic completeness of the sample to 99.5 per cent; only 1059−010 (3C 249) is currently without redshift.  相似文献   

5.
We describe deep radio imaging at 1.4 GHz of the 1.3-deg2 Subaru/ XMM–Newton Deep Field (SXDF), made with the Very Large Array in B and C configurations. We present a radio map of the entire field, and a catalogue of 505 sources covering 0.8 deg2 to a peak flux density limit of 100 μJy. Robust optical identifications are provided for 90 per cent of the sources, and suggested identifications are presented for all but 14 (of which seven are optically blank, and seven are close to bright contaminating objects). We show that the optical properties of the radio sources do not change with flux density, suggesting that active galactic nuclei (AGN) continue to contribute significantly at faint flux densities. We test this assertion by cross-correlating our radio catalogue with the X-ray source catalogue and conclude that radio-quiet AGN become a significant population at flux densities below 300 μJy, and may dominate the population responsible for the flattening of the radio source counts if a significant fraction of them are Compton-thick.  相似文献   

6.
We study the 37 brightest radio sources in the Subaru/ XMM–Newton Deep Field. We have spectroscopic redshifts for 24 of 37 objects and photometric redshifts for the remainder, yielding a median redshift z med for the whole sample of   z med≃ 1.1  and a median radio luminosity close to the 'Fanaroff–Riley type I/type II (FR I/FR II)' luminosity divide. Using mid-infrared (mid-IR) ( Spitzer MIPS 24 μm) data we expect to trace nuclear accretion activity, even if it is obscured at optical wavelengths, unless the obscuring column is extreme. Our results suggest that above the FR I/FR II radio luminosity break most of the radio sources are associated with objects that have excess mid-IR emission, only some of which are broad-line objects, although there is one clear low-accretion-rate object with an FR I radio structure. For extended steep-spectrum radio sources, the fraction of objects with mid-IR excess drops dramatically below the FR I/FR II luminosity break, although there exists at least one high-accretion-rate 'radio-quiet' QSO. We have therefore shown that the strong link between radio luminosity (or radio structure) and accretion properties, well known at z ∼ 0.1, persists to z ∼ 1. Investigation of mid-IR and blue excesses shows that they are correlated as predicted by a model in which, when significant accretion exists, a torus of dust absorbs ∼30 per cent of the light, and the dust above and below the torus scatters ≳1 per cent of the light.  相似文献   

7.
We have cross-matched the 1.4-GHz NRAO VLA Sky Survey (NVSS) with the first 210 fields observed in the 2dF Galaxy Redshift Survey (2dFGRS), covering an effective area of 325 deg2 (about 20 per cent of the final 2dFGRS area). This yields a set of optical spectra of 912 candidate NVSS counterparts, of which we identify 757 as genuine radio identifications – the largest and most homogeneous set of radio source spectra ever obtained. The 2dFGRS radio sources span the redshift range     to 0.438, and are a mixture of active galaxies (60 per cent) and star-forming galaxies (40 per cent). About 25 per cent of the 2dFGRS radio sources are spatially resolved by NVSS, and the sample includes three giant radio galaxies with projected linear size greater than 1 Mpc. The high quality of the 2dF spectra means we can usually distinguish unambiguously between AGN and star-forming galaxies. We make a new determination of the local radio luminosity function at 1.4 GHz for both active and star-forming galaxies, and derive a local star formation density of         .  相似文献   

8.
On plates of the large Schmidt-telescope of Karl-Schwarzschild-Observatory Tautenburg, taken by F. BÖRNGEN, 139 radio sources of the 5C3 area were inspected for possible identifications with optical objects. The results are published in paper I and in the appendix of the present paper II. A detailed analysis of these objects showed a relatively large number of about 65 real identifications up to the utmost plate limit B ≈ 21m.7, which corresponds to an identification rate of about 47%. The individual reliability of each possible optical identification is estimated (table 6). Apparently the identified objects (see tables 4 and 6) are galaxies, “blue” and “neutral” quasars, and one H II-region of the Andromeda nebula. It is of great cosmological interest that no “red” quasars could be found.  相似文献   

9.
In this paper the search for optical identifications in the 5C-radio surveys is continued. Near the positions of 135 radio sources of the 5C3 catalogue all present optical objects up to the plate limit (about B ≈︁ 21) have been measured photometrically in UBVr and astrometrically on plates of the 134/200 cm Schmidt telescope of the Karl Schwarzschild Observatory Tautenburg. A total of 111 candidates for possible optical identifications were found. The number of real identifications will be, of course, much smaller. Among the 111 objects there are: 12 supposed QSO's, 21 galaxies or probable galaxies, 56 stellar objects the greater part of which may be main sequence stars, subdwarfs and white dwarfs, and I object may be the centre of an H II region in the OB-association OB 182. 21 objects near the plate limit could not be classified. A statistical treatment with information on the real rate of identification (it roughly will amount to about 10%) and its reliability will be given in part III.  相似文献   

10.
This paper presents the optical properties of the objects selected in the CLASS blazar survey. Because an optical spectrum is now available for 70 per cent of the 325 sources present in the sample, a spectral classification, based on the appearance of the emission/absorption lines, is possible. A wide variety of optical spectral types is found. Besides 'classical' BL Lacs (42), BL Lac candidates (5) and high-power     flat spectrum radio quasars (67), a significant number of 'passive' elliptical galaxies (41) is also found. Moreover, 33 broad emission line objects with a low radio power     are discovered, suggesting that at least a fraction (∼     per cent) of low-power blazars have a broad line region. Finally, 34 objects showing only narrow emission lines, either as a result of some starburst activity in the host galaxy or as a result of the presence of an active galactic nucleus, appear in the sample.  相似文献   

11.
Photographic photometry and objective prism spectroscopy has been performed for most of the objects near 5C1 radio sources brighter than 19m.6 discussed by NOTNI and FRöHLICH (1975). Updated samples of identification candidates are presented. The mean reliability of the identifications is better than 90% for blue starlike or concentrated objects and 67% for galaxies. In addition, a few bright galactic stars seem to occur among the radio sources.  相似文献   

12.
We have searched the archived, pointed ROSAT Position Sensitive Proportional Counter data for blazars by correlating the WGACAT X-ray data base with several publicly available radio catalogues, restricting our candidate list to serendipitous X-ray sources with a flat radio spectrum ( α r≤0.70, where S ν ∝ ν − α ). This makes up the Deep X-ray Radio Blazar Survey (DXRBS). Here we present new identifications and spectra for 106 sources, including 86 radio-loud quasars, 11 BL Lacertae objects, and nine narrow-line radio galaxies. Together with our previously published objects and already-known sources, our sample now contains 298 identified objects: 234 radio-loud quasars [181 flat-spectrum quasars: FSRQ ( α r≤0.50) and 53 steep-spectrum quasars: SSRQ], 36 BL Lacs and 28 narrow-line radio galaxies. Redshift information is available for 96 per cent of these. Thus our selection technique is ∼90 per cent efficient at finding radio-loud quasars and BL Lacs. Reaching 5-GHz radio fluxes ∼50 mJy and 0.1–2.0 keV X-ray fluxes a few ×10−14 erg cm−2 s−1, DXRBS is the faintest and largest flat-spectrum radio sample with nearly complete (∼85 per cent) identification. We review the properties of the DXRBS blazar sample, including redshift distribution and coverage of the X-ray-radio–power plane for quasars and BL Lacs. Additionally, we touch upon the expanded multiwavelength view of blazars provided by DXRBS. By sampling for the first time the faint end of the radio and X-ray luminosity functions, this sample will allow us to investigate the blazar phenomenon and the validity of unified schemes down to relatively low powers.  相似文献   

13.
Eight radio sources with signatures of interacting galaxies have been detected within the framework of the project aimed at expanding the list of giant radio galaxies based on NVSS data. The objects have a nontrivial structure in the radio band: four sources exhibit an S-shape, three sources exhibit an X-shape typical of sources at the final stage of radio galaxy merging, and one radio galaxy has a double nucleus. Using the CATS, NED, and SkyView databases, we have made the optical and radio identifications of these objects and constructed their continuum radio spectra.  相似文献   

14.
We have surveyed 188 ROSAT Position Sensitive Proportional Counter (PSPC) fields for X-ray sources with hard spectra ( α <0.5); such sources must be major contributors to the X-ray background at faint fluxes. In this paper we present optical identifications for 62 of these sources: 28 active galactic nuclei (AGN) which show broad lines in their optical spectra (BLAGN), 13 narrow emission line galaxies (NELGs), five galaxies with no visible emission lines, eight clusters and eight Galactic stars.
The BLAGN, NELGs and galaxies have similar distributions of X-ray flux and spectra. Their ROSAT spectra are consistent with their being AGN obscured by columns of 20.5< log( N H/cm−2)<23 . The hard spectrum BLAGN have a distribution of X-ray to optical ratios which is similar to that found for AGN from soft X-ray surveys (1< α OX<2) . However, a relatively large proportion (15 per cent) of the BLAGN, NELGs and galaxies are radio loud. This could be because the radio jets in these objects produce intrinsically hard X-ray emission, or if their hardness is caused by absorption, it could be because radio-loud objects are more X-ray luminous than radio-quiet objects. The eight hard sources identified as clusters of galaxies are the brightest, and softest group of sources and hence clusters are unlikely to be an important component of the hard, faint population.
We propose that BLAGN are likely to constitute a significant fraction of the faint, hard, 0.5–2 keV population and could be important to reproducing the shape of the X-ray background, because they are the most numerous type of object in our sample (comprising almost half the identified sources), and because all our high redshift ( z >1) identified hard sources have broad lines.  相似文献   

15.
Analysis of ultraviolet (UV) observations with the FAUST shuttle-borne telescope toward the Antennae and NGC 6752 celestial regions resulted in the detection of 46 and 221 candidate sources respectively, for a signal-to-noise ratio of 8. We discuss the source detection process and the identification of UV sources with optical counterparts. Using correlations with existing catalogues, we present reliable identifications for approximately 60 per cent of the sources. We find that most identified objects are B, A and F stars. The remaining identified objects are galaxies, a white dwarf in a binary system, and two K-type stars. Nearly all of the remaining unidentified objects have assigned optical counterparts but, lacking additional information, we give these only as best estimates. With help from new diagnostic diagrams, we suggest that these unclassified objects are main-sequence (or giant) stars within the local spiral arm or halo; or other hot evolved objects within the local spiral arm. We discuss the nature of the objects found and compare our results with those predicted from spectral and Galactic models.  相似文献   

16.
We present the classification of optical identifications and radio spectra of six radio sources from a complete (in flux density) sample in the declination range 10° to 12°30′ (J2000.0). The observations were carried out with the 6-m Special Astrophysical Observatory telescope (Russia) in the wavelength range 3600–10000 Å, the 2.1-m GHAO telescope (Mexico) in the range 4200–9000 Å, and the RATAN-600 radio telescope in the frequency range 0.97–21.7 GHz. Three of the six objects under study are classified as quasars, one is a BL Lac object, one is an absorption-line radio galaxy, and one is an emission-line radio galaxy. Five objects have flat radio spectra, and one object has a power-law radio spectrum. All of the radio sources identified as quasars or BL Lac objects show variable radio flux densities. The spectra of three objects were separated into extended and compact components.  相似文献   

17.
FIRST and NVSS radio maps are used to cross identify the radio sources of the RCR catalog, which is based on observational data obtained in several runs of the “Cold” survey, with the SDSS and DPOSS digital optical sky surveys and the 2MASS, LAS UKIDSS, and WISE infrared surveys. Digital images in various filters and the coadded gri-band SDSS images, red and infrared DPOSS images, JHK-band UKIDSS images, and JHK-band 2MASS images are analyzed for the sources with no optical candidates found in the above catalogs. Our choice of optical candidates was based on the data on the structure of the radio source, its photometry, and spectroscopy (where available). We found reliable identifications for 86% of the radio sources; possible counterparts for 8% of the sources, and failed to find any optical counterparts for 6% of the sources because their host objects proved to be fainter than the limiting magnitude of the corresponding surveys. A little over half of all the identifications proved to be galaxies; about one quarter were quasars, and the types of the remaining objects were difficult to determine because of their faintness. A relation between the luminosity and the radioloudness index was derived and used to estimate the 1.4 and 3.94 GHz luminosities for the sources with unknown redshifts. We found 3% and 60% of all the RCR radio sources to be FRI-type objects (L ? 1024 W/Hz at 1.4 GHz) and powerful FRII-type galaxies (L ? 1026.5 W/Hz), respectively, whereas the rest are sources including objects of the FRI, FRII, and mixed FRI-FRII types. Unlike quasars, galaxies show a trend of decreasing luminosity with decreasing flux density. Note that identification would be quite problematic without the software and resources of the virtual observatory.  相似文献   

18.
We present the optical-to-submillimetre spectral energy distributions (SEDs) for 33 radio and mid-infrared (mid-IR) identified submillimetre galaxies discovered via the SHADES 850-μm SCUBA imaging in the Subaru- XMM Deep Field (SXDF). Optical data for the sources come from the SXDF and mid- and far-IR fluxes from SWIRE. We obtain photometric redshift estimates for our sources using optical and IRAC 3.6- and 4.5-μm fluxes. We then fit SED templates to the longer wavelength data to determine the nature of the far-IR emission that dominates the bolometric luminosity of these sources. The IR template fits are also used to resolve ambiguous identifications and cases of redshift aliasing. The redshift distribution obtained broadly matches previous results for submillimetre sources and on the SHADES SXDF field. Our template fitting finds that active galactic nuclei, while present in about 10 per cent of our sources, do not contribute significantly to their bolometric luminosity. Dust heating by starbursts, with either Arp220 or M82 type SEDs, appears to be responsible for the luminosity in most sources (23/33 are fitted by Arp220 templates, 2/33 by the warmer M82 templates). 8/33 sources, in contrast, are fitted by a cooler cirrus dust template, suggesting that cold dust has a role in some of these highly luminous objects. Three of our sources appear to have multiple identifications or components at the same redshift, but we find no statistical evidence that close associations are common among our SHADES sources. Examination of rest-frame K -band luminosity suggests that 'downsizing' is underway in the submillimetre galaxy population, with lower redshift systems lying in lower mass host galaxies. Of our 33 identifications six are found to be of lower reliability but their exclusion would not significantly alter our conclusions.  相似文献   

19.
The radio counterparts to the 15-μm sources in the European Large Area ISO Survey southern fields are identified in 1.4-GHz maps down to ∼80 μJy. The radio–mid-infrared correlation is investigated and derived for the first time at these flux densities for a sample of this size. Our results show that radio and mid-infrared (MIR) luminosities correlate almost as well as radio and far-infrared (FIR), at least up to   z ≃ 0.6  . Using the derived relation and its spread together with the observed 15-μm counts, we have estimated the expected contribution of the 15-μm extragalactic populations to the radio source counts and the role of MIR starburst galaxies in the well-known 1.4-GHz source excess observed at sub-mJy levels. Our analysis demonstrates that IR emitting starburst galaxies do not contribute significantly to the 1.4-GHz counts for strong sources, but start to become a significant fraction of the radio source population at flux densities ≲0.5–0.8 mJy. They are expected to be responsible for more than 60 per cent of the observed radio counts at ≲0.05 mJy. These results are in agreement with the existing results on optical identifications of faint radio sources.  相似文献   

20.
The results of the U, B, V photometries of W. BRONKALLA and N. RICHTER near the north galactic pole are discussed. In these photometries which have been carried out on the same Tautenburg Schmidt plates the share of blue objects suspected as quasistellar (QSO) has been determined by total photometry of all starlike objects in selected partly overlapping test fields. The results of both photometries agree very well. The position of the blue objects of the Tautenburg catalogues and BRONKALLA's photometry in the two-colour diagram is compared with the two-colour diagram of QSO's published by C. BARBIERI and M. CAPPACIOLI . In both cases 65 per cent of the objects are placed on the right-hand side and 35 per cent on the left-hand side (region of white dwarfs) of the black-body line. Therefore, it is no longer admissible to qualify in a photometric statistics of blue objects all those objects as white dwarfs which are situated on the left-hand side of the black-body line in the two-colour plot. This result is confirmed by the discussion of the number-magnitude relation of these objects. Clustering of blue objects and their connection with clusters of galaxies are discussed. Using results from A. SANDAGE and E. M. BURBIDGE and our own results one can conclude that more than 60 per cent of Tautenburg blue objects must be QSO's. For further spectroscopic and proper motion investigations it is proposed to prefer the objects placed on the left-hand side of the black-body line in order to obtain the real share of white dwarfs in this group of objects suspected to be quasistellar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号