首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A crossed Yagi antenna array at 35 MHz was employed in conjunction with a polarization switch so as to enable spectral observations of solar noise storm activity in R and L polarizations. Intense decametric solar noise storms were recorded during the third week of November 1975 and fourth week of March 1976 with the help of a high resolution spectroscope operating near 35 MHz.The paper describes some of the new microscopic spectral features observed during these two noise storms. Three sets of high resolution dynamic spectra of decametric solar bursts, two of which are explained in terms of induced scattering of Langmuir waves by thermal ions and the third in terms of additional propagation effects through dense coronal irregularities, are presented. The microscopic bursts, classified as inverted U U and dots, represent small-scale (104 km) phenomena with durations of less than a second.Some burst spectra appear as chain of dots with individual bandwidths 40 kHz and durations 0.3 sec. It is suggested that the bandwidth of such dot emissions (40 kHz) provides an evidence that they might indeed be generated by the process of induced scattering of plasma waves which predicts emission bandwidth f × 10–3, where f is the center frequency.Some bursts are observed as a chain of striations showing curvature along the frequency axis which is attributed to dispersion in propagation delays through the dense coronal irregularities.  相似文献   

2.
It is shown that major geomagnetic storms (¦Dst¦ > 100) tend to develop at about the time of the passage of the solar current sheet or disk at the location of the Earth, provided this passage is associated with (1) a large impulsive increase of the IMF magnitude B, (2) a negative value of the IMF angle (Theta), and (3) an increasing solar wind speed. The passage occurs in association with the 27-day rotation of the warped current disk or a temporal up-down movement of the latter. The period in which ¦Dst¦/t< 0 during major storms coincides approximately with the period when the solar windmagnetosphere energy coupling function becomes 1019 erg s–1. These conclusions do not depend on the phase of the sunspot cycle.These results may be interpreted as follows: A high speed solar wind flow, originating either from flare regions or coronal holes, tends to push the solar current disk to move upward or downward for either a brief period (1 3 days) or an extended period (2 weeks). A relatively thin region of a large IMF B > 10 is often present near the moving current disk. Waves are also generated on the moving current disk, and some of them cause large changes of . A high value of is found in the region of a large IMF B near the wavy solar current disk, where has a large negative value.  相似文献   

3.
The probable connection between cosmic rays and the electromagnetic state of the interplanetary medium was recognized by Hannes Alfvén as early as 1949 (Alfvén, 1949, 1950); he pointed out that the properties of cosmic rays necessitate a mechanism, external to Earth but within the solar system, capable of accelerating particles to extremely high energies. In advocating the view of local origin for part of the cosmic-ray spectrum, Alfvén and his colleagues developed a very general type of acceleration mechanism called magnetic pumping. The unique data set of the two Voyagers extends over an entire decade (1977–1987) and is most suitable to explore the problem of acceleration of charged particles in the heliosphere. The energy coverage of the Low Energy Charged Particle (LECP) experiment covers the range 30 keV to several hundred MeV for ions and 22 keV to several MeV for electrons. Selected observations of interplanetary acceleration events from 1 to 25 AU are presented and reviewed. These show frequent acceleration of ions to several tens of MeV in association with shocks; highest energies (220 MeV oxygen) were measured in the near-perpendicular ( Bn 87.5°) shock of January 5, 1978 at 1.9 AU, where electron acceleration was also observed. Examples of ion acceleration in association with corotating interaction regions are presented and discussed. It is shown that shock structures have profound effects on high-energy (70 MeV) cosmic rays, especially during solar minimum, when a negative latitudinal gradient was observed after early 1985 at all energies from 70 MeV down to 30 keV. By early 1987, most shock acceleration activity in the outer heliosphere (25 to 30 AU) had ceased both in the ecliptic (Voyager-2) and at higher (30°) ecliptic latitudes (Voyager-1). The totality of observations demonstrate that local acceleration to a few hundred MeV, and as high as a few GeV is continually present throughout the heliosphere. It should be noted that in 1954 when Alfvén suggested local acceleration and containment of cosmic rays within the solar system, no one treated his suggestion seriously, at any energy. The observations reviewed in this paper illustrate once more Alfvén's remarkable prescience and demonstrate how unwise it is to dismiss his ideas.Paper dedicated to Professor Hannes Alfvén on the occasion of his 80th birthday, 30 May 1988.  相似文献   

4.
A spectral analysis of the time series of daily values of 12 parameters, namely, ten solar radio emissions in the range 275–1755 MHz, 2800 MHz solar radio flux, and sunspot numbers for six continuous intervals of 132 values each during June 1997–July 1999 showed considerable differences from one interval to the next, indicating a nonstationary nature. A 27-day periodicity was noticed in Interval 2 (26.8 days), 3 (27.0 days), 5 (25.5 days), 6 (27.0 days). Other periodicities were near 11.4, 12.3, 13.3, 14.5, 15.5, 16.5, 35, 40, 50–70 days. Periodicities were very similar in a large vertical span of the coronal region corresponding to 670–1755 MHz. Above this region, the homogeneity disappeared. Below this region, there were complications and distortions due to localized solar surface phenomena.  相似文献   

5.
This paper presents the results of the study on the periodicity and the distribution of the sudden disappearance of the solar prominences (SD) on the chromosphere. The spectral analysis of the SD, from 1039 to 1762 Carrington rotation number, shows a typical period at 138 (10.3 yr) solar rotations in the northern hemisphere and at 153 (11.4 yr) solar rotations in the southern hemisphere of the Sun. The power spectral analysis of the asymmetry index yields a primary peak at 155 (11.6 yr) solar rotations. By plotting the distribution of SD along the Carrington longitude, it can be seen that the distribution of the SD is nearly uniform.  相似文献   

6.
The solar causes of geomagnetic disturbances   总被引:1,自引:0,他引:1  
Geomagnetic disturbances have been identified with respect to their sources for 1977–1983. The disturbance level was found using the daily planetary index A p. High-amplitude ( 50), mean-amplitude (24) and low-amplitude ( 12) disturbances are caused by solar flares of importance 1, coronal holes, and filament cavities, respectively. The ranges of probable amplitudes of disturbances of different nature and their relative number are found from Poisson random distributions of amplitudes.  相似文献   

7.
A highly anisotropic packet of solar electron intensities was observed on 6 April 1971 with a sensitive electrostatic analyzer array on the Earth-orbiting satellite IMP-6. The anisotropies of intensities at electron energies of several keV were factors 10 favoring the expected direction of the interplanetary magnetic lines of force from the Sun. The directional, differential intensities of solar electrons were determined over the energy range 1–40 keV and peak intensities were 102 cm–2 s–1 sr–1 eV–1 at 2–6 keV. This anisotropic packet of solar electrons was detected at the sattelite for a period of 4200 s and was soon followed by isotropic intensities for a relatively prolonged period. This impulsive emission was associated with the onsets of an optical flare, soft X-ray emission and a radio noise storm at centimeter wavelengths on the western limb of the Sun. Simultaneous measurements of a type III radio noise burst at kilometric wavelengths with a plasma wave instrument on the same satellite showed that the onsets for detectable noise levels ranged from 500 s at 178 kHz to 2700 s at 31.1 kHz. The corresponding drift rate requires a speed of 0.15c for the exciting particles if the emission is at the electron plasma frequency. The corresponding electron energy of 6 keV is in excellent agreement with the above direct observations of the anisotropic electron packet. Further supporting evidence that several-keV solar electrons in the anisotropic packet are associated with the emission of type III radio noise beyond 50R is provided by their time-of-arrival at Earth and the relative durations of the radio noise and the solar electron packet. Electron intensities at E 45 keV and the isotropic intensities of lower-energy solar electrons are relatively uncorrelated with the measurements of type III radio noise at these low frequencies. The implications of these observations relative to those at higher frequencies, and heliocentric radial distances 50R , include apparent deceleration of the exciting electron beam with increasing heliocentric radial distance.Research supported in part by the National Aeronautics and Space Administration under contracts NAS5-11039 and NAS5-11074 and grant NGL16-001-002 and by the Office of Naval Research under contract N000-14-68-A-0196-0003.  相似文献   

8.
Previous global models of coronal magnetic fields have used a geometrical construction based on a spherical source surface because of requirements for computational speed. As a result they have had difficulty accounting for (a) the tendency of full magnetohydrodynamic (MHD) models to predict non-radial plasma flow out to r 10r and (b) the appreciable magnitude, 3, of B r , (the radial component of B) consistently observed at r 1 AU. We present a new modelling technique based on a non-spherical source surface, which is taken to be an isogauss of the underlying potential field generated by currents in or below the photosphere. This modification of the source surface significantly improves the agreement between the geometrical construction and the MHD solution while retaining most of the computational ease provided by a spherical source surface. A detailed comparison between the present source-surface model and the MHD solution is made for the internal dipole case. The resulting B field agrees well in magnitude and direction with the coronal B field derived from the full MHD equations. It shows evidence of the slightly equatorward meridional plasma flow that is characteristic of the MHD solution. Moreover, the B field obtained by using our non-spherical source surface agrees well with that observed by spacecraft in the vicinity of the Earth's orbit. Applied to a solar dipole field with a moment of 1 G-r 3 , the present model predicts that B r at r 1 AU lies in the range of 1–2 and is remarkably insensitive to heliomagnetic latitude. Our method should be applicable also to more general (i.e., more realistic) configurations of the solar magnetic field. Isogauss surfaces for two representative solar rotations, as calculated from expansions of observed photospheric magnetic-field data, are found to show large and significant deviations from sphericity.  相似文献   

9.
On the basis of empirical (D)-dependency at the frequency of 5 GHz constructed using 15 planetary nebulae with the independently measured distances (10–171×10–20 W m–2 Hz–1 ster–1), we evaluated distances of 335 objects. Independent evidence of the correctness of the accepted scale are given. Then(D)-dependency is constructed and it is shown that atD<0.08 pc the mean electron density is higher than the one determined by the Seaton method. We showed that the filling factor diminishes with the increase of the PN diameter (1 atD0.08 pc and 0.2 atD0.4 pc). the ionized mass of 33 PNs is determined. With the diameter increase the ionized mass grows and atD0.4 pc reaches the valueM0.07M . We used the new distance scale when investigating the space distribution of PNs. The mean scale height =130±15 pc and the mean gradient of the change of surface densitym=0.37, which allowed us to estimate the total number of nebulae in the GalaxyN4×104. We divided the PNs according to their velocities (withV LSR>35 km s–1 andV LSR<35 km s–1) and permitted us to confirm that the PN belong to different sub-systems of the Galaxy. The estimated local formation rate of PNs [=(4.6±2.2)×10–12 pc–3 yr–1] is a little higher than the one of the white dwarfs. That can be explained by a large number of PNs having binary cores, which used in our sample. The statistical estimation of PN expansion velocity showed thatV ex increases from 5–7 km s–1 (atD0.03 pc) to 40–50 km s–1 (atD0.8 pc).  相似文献   

10.
From an analysis of the interstellar extinction we conclude that interstellar grains are of three main kinds: graphite spheres of radii 0.02 m making up 10% of the total grain mass, small dielectric spheres of radius about 0.04 m making up 25% of the mass, and hollow dielectric cylinders containing metallic iron with diameters of 2/3 m making up 45% of the mass. The remaining 20% consists of other metals and metal oxides. The main dielectric component of the grains appears to be comprised of organic material.  相似文献   

11.
The flare of 11 November, 1980, 1725 UT occurred in a magnetically complex region. It was preceded by some ten minutes by a gradual flare originating over the magnetic inversion line, close to a small sunspot. This seems to have triggered the main flare (at 70 000 km distance) which originated between a large sunspot and the inversion line. The main flare started at 172320 UT with a slight enhancement of hard X-rays (E > 30 keV) accompanied by the formation of a dark loop between two H bright ribbons. In 3–8 keV X-rays a southward expansion started at the same time, with - 500 km s –1. At the same time a surge-like expansion started. It was observable slightly later in H, with southward velocities of 200 km s–1. The dark H loop dissolved at 1724 UT at which time several impulsive phenomena started such as a complex of hard X-ray bursts localized in a small area. At the end of the impulsive phase at 172540 UT, a coronal explosion occurred directed southward with an initial expansion velocity of 1800 km s–1, decreasing in 40 s to 500 km s–1.Now at Fokker Aircraft Industries, Schiphol, The Netherlands.  相似文献   

12.
Two-dimensional isophotes of the extreme solar corona (r max 45 R ) have been derived from integrated vidicon pictures taken from the Moon's surface by the unmanned probes Surveyors 6 and 7. These data were calibrated through use of previously published values for the coronal brightness gradient along the ecliptic. The resulting structure of the outer corona is compared to ground-based observations of the innermost corona 1.125 r/R 2.0 made by the High Altitude Observatory K-coronameter. The possible existence of a streamer seen by Surveyor 7 is analyzed over the region 15 r 22.5 R .  相似文献   

13.
Low-level decimetric (1.6 GHz) solar burst activity   总被引:6,自引:0,他引:6  
Observations of solar bursts at 1.6 GHz were carried out in the month of July 1985 for about two weeks. Five intervals of solar burst activity, each one lasting for a couple of minutes, were observed. Predominantly, two classes of fast bursts were observed: viz: spike and blips. However, some of these bursts were two orders of magnitude less intense than those reported earlier.Low-level blips have typical duration 350 ms, excitation time 200 ± 25 ms, decay time 130 ± 25 ms and a low degree of circular polarization of about 15%. Detailed investigations of decay times of the blips have been carried out in terms of collisional damping and Landau damping. Observed decay times of the blips seem to favour the hypothesis of collisional damping. This investigation suggests that blips probably originate at second harmonic by beam plasma interaction as that of metric type III bursts. Also, low-level ms-spikes with the half power duration in the range of 5 to 20 ms suggest that source sizes be smaller than 50 km if the process of emission is electron-cyclotron maser.Proceedings of the Second CESRA Workshop on Particle Acceleration and Trapping in Solar Flares, held at Aubigny-sur-Nère (France), 23–26 June, 1986.  相似文献   

14.
The long-time series of daily means of cosmic-ray intensity observed by four neutron monitors at different cutoff rigidities (Calgary, Climax, Lomnický tít and Huancayo/Haleakala) were analyzed by means of the wavelet transform method in the period range 60 to 1000 days. The contributions of the time evolution of three quasi-periodic cosmic-ray signals (150 d, 1.3 yr and 1.7 yr) to the global one are obtained. While the 1.7-yr quasi-periodicity, the most remarkable one in the studied interval, strongly contributes to the cosmic ray intensity profile of solar cycle 21 (particularly in 1982), the 1.3-yr one, which is better correlated with the same periodicity of the interplanetary magnetic field strength, is present as a characteristic feature for the decreasing phases of the cycles 20 and 22. Transitions between these quasi-periodicities are seen in the wavelet power spectra plots. Obtained results support the claimed difference in the solar activity evolution during odd and even solar activity cycles.  相似文献   

15.
Spherically symmetric, steady-state, optically thick accretion onto a nonrotating black hole with the mass of is studied. The gas accreting onto the black hole is assumed to be a fully ionized hydrogen plasma withn 0=108 cm–3 andT 0=104 K far from the black hole, and a new approximate expression for the Eddington factor is introduced. The luminosity is estimated to beL=1.875×1033 erg s–1, which primarily arises from the optical surface (1) ofT104 K. The accretion flow is characterized by 1 and (v/c)10. In the optically thin region, the flow remains isothermal, and the increase of temperature occurs at 1. The radiative equilibrium is strictly realized at (v/c)10.  相似文献   

16.
On the persistence of the 22 y solar cycle   总被引:2,自引:0,他引:2  
We briefly discuss the existence of precise periodicities of the Hale cycle (-22 y), the Gleissberg cycle (-88 y), and -132 y cycle, in various direct and indirect indicators (as aurorae, 14C from tree rings and 10Be from polar ice) of solar activity. We consider also the behaviour of the 11y cycle and its first harmonic in modern sunspot series. It appears that the frequencies of -1 c/88 y and -1 c/132 y might be two subharmonics of the Hale cycle. The results support the hypothesis that the Sun behaves as a nonlinear system forced by an oscillator having the Hale frequency. The forcing element inside the Sun can be identified with a magnetofluid torsional oscillator.  相似文献   

17.
A further development of the Kostyuk-Pikelner's model is presented. The response of the chromosphere heated by non-thermal electrons of the power-law energy spectrum has been studied on the basis of the numerical solution of the one-dimensional time-dependent equations of gravitational gas dynamics. The ionization and energy loss for the emissions in the Lyman and Balmer lines have been determined separately for the optically thin and thick L-line layers. Due to the initial heating, a higher-pressure region is formed. From this region, disturbances propagate upwards (a shock wave with a velocity of more than 1000 km s-1) and downwards. A temperature jump propagates downwards, and a shock is formed in front of the thermal wave. During a period of several seconds after the beginning of this process, the temperature jump intensifies the downward shock wave and the large radiative loss gives rise to the high density jump ( 2/ 1 100). The numerical solution has been analyzed in detail for the case heating of the ionized and neutral plasma, and a value of this heating is close to the upper limit of the admissible values. In this case, the condensation located between the temperature jump and the shock wave front, may emit in the observed optical continuum.In their essential features, the gas dynamic processes during the flares in red dwarf atmospheres are the same as those in the solar atmosphere. However, the high atmospheric densities, smaller height scale in red dwarf atmospheres, and greater energy of this processes in stellar flares, give rise, in practice, to the regular generation of optical continuum. The photometric parameters of a source with n 015 cm-3, T 9000 K, and z 10 km are in a good agreement with observations.  相似文献   

18.
L. W. Avery 《Solar physics》1976,49(1):141-149
Observations of the continuum microwave flux at 2.8 cm from quiet regions of the solar disc reveal low amplitude, quasiperiodic fluctuations at periods of 234 s and 150 s. For oscillating elements 10 arc seconds in extent, the corresponding peak to peak temperature variations are 230 K and 190 K. The energy flux in the oscillations is estimated to be 2.5x102 ergs cm2 s–1, assuming they are caused by acoustic waves. If the oscillating elements are 1 arc second in extent, the energy flux is comparable to that required for coronal heating.No evidence is found for strong oscillations at periods greater than 250 s, although other authors have claimed microwave detection of strong fluctuations at periods of 280 s and 400 s.  相似文献   

19.
We present Very Large Array observations at wavelengths of 2, 3.5, 6, and 20 cm, of angular broadening of radio sources due to the solar wind in the region 2–16 solar radii. Angular broadening is anisotropic with axial ratios in the range 2–16. Larger axial ratios are observed preferentially at smaller solar distances. Assuming that anisotropy is due to scattering blobs elongated along magnetic field lines, the distribution of position angles of the elliptically broadened images indicates that the field lines are non-radial even at the largest heliocentric distances observed here. At 5R , the major axis scattering angle is 0.7 at =6 cm and it varies with heliocentric distance asR –1.6. The level of turbulence, characterized by the wave structure function at a scale of 10 km along the major axis, normalized to =20 cm, has a value 20±7 at 5R and varies with heliocentric distance asR –3. Comprison with earlier results suggest that the level of turbulence is higher during solar maximum. Assuming a power-law spectrum of electron density fluctuations, the fitted spectral exponents have values in the range 2.8–3.4 for scales sizes between 2–35 km. The data suggests temporal fluctuations (of up to 10%) in the spectral exponent on a time scale of a few tens of minutes. The observed structure functions at different solar distances do not show any evidence for an inner scale; the upper limits are 1 km at 2R and 4 km at 13R . These upper limits are in conflict with earlier determinations and may suggest a reduced inner scale during solar maximum.  相似文献   

20.
The cooling effect of emission in the spectral lines, which dominates over continuous emission in the chromosphere and becomes important first around the temperature minimum, modifies greatly the radiative relaxation timet r in the solar atmosphere. This rises from low photospheric values to a maximum of 8 min just aboveT min, falls in the low chromosphere to 1.5 min because of line emission, but rises again to 6 min atT 7000–8400 K in the chromosphere where hydrogen ionization increases the specific heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号