首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A quantitative procedure for mapping landslide risk is developed from considerations of hazard, vulnerability and valuation of exposed elements. The approach based on former work by the authors, is applied in the Bajo Deba area (northern Spain) where a detailed study of landslide occurrence and damage in the recent past (last 50 years) was carried out. Analyses and mapping are implemented in a Geographic Information System (GIS).The method is based on a susceptibility model developed previously from statistical relationships between past landslides and terrain parameters related to instability. Extrapolations based on past landslide behaviour were used to calculate failure frequency for the next 50 years. A detailed inventory of direct damage due to landslides during the study period was carried out and the main elements at risk in the area identified and mapped. Past direct (monetary) losses per type of element were estimated and expressed as an average ‘specific loss’ for events of a given magnitude (corresponding to a specified scenario). Vulnerability was assessed by comparing losses with the actual value of the elements affected and expressed as a fraction of that value (0–1).From hazard, vulnerability and monetary value, risk was computed for each element considered. Direct risk maps (€/pixel/year) were obtained and indirect losses from the disruption of economic activities due to landslides assessed. The final result is a risk map and table combining all losses per pixel for a 50-year period. Total monetary value at risk for the Bajo Deba area in the next 50 years is about 2.4 × 106 Euros.  相似文献   

2.
The work aims at identifying susceptible areas and pluviometric triggering scenarios at a regional scale in Calabria (Italy), with reference to shallow landsliding events. The proposed methodology follows a statistical approach and uses a database linked to a GIS that has been created to support the various steps of spatial data management and manipulation. The shallow landslide predisposing factors taken into account are derived from (i) the 40-m digital terrain model of the region, an  15,075 km2 extension; (ii) outcropping lithology; (iii) soils; and (iv) land use. More precisely, a map of the slopes has been drawn from the digital terrain model. Two kinds of covers [prevalently coarse-grained (CG cover) or fine-grained (FG cover)] were identified, referring to the geotechnical characteristics of geomaterial covers and to the lithology map; soilscapes were drawn from soil maps; and finally, the land use map was employed without any prior processing.Subsequently, the inventory maps of some shallow landsliding events, totaling more than 30,000 instabilities of the past and detected by field surveys and photo aerial restitution, were employed to calibrate the relative importance of these predisposing factors.The use of single factors (first level analysis) therefore provides three different susceptibility maps. Second level analysis, however, enables better location of areas susceptible to shallow landsliding events by crossing the single susceptibility maps.On the basis of the susceptibility map obtained by the second level analysis, five different classes of susceptibility to shallow landsliding events have been outlined over the regional territory: 8.9% of the regional territory shows very high susceptibility, 14.3% high susceptibility, 15% moderate susceptibility, 3.6% low susceptibility, and finally, about 58% very low susceptibility.Finally, the maps of two significant shallow landsliding events of the past and their related rainfalls have been utilized to identify the relevant pluviometric triggering scenarios. By using 205 daily rainfall series, different triggering pluviometric scenarios have been identified with reference to CG and FG covers: a value of 365 mm of the total rainfall of the event and/or 170 mm/d of the rainfall maximum intensity and a value of 325 mm of the total rainfall of the event and/or 158 mm/d of the rainfall maximum intensity are able to trigger shallow landsliding events for CG and FG covers, respectively.The results obtained from this study can help administrative authorities to plan future development activities and mitigation measures in shallow landslide-prone areas. In addition, the proposed methodology can be useful in managing emergency situations at a regional scale for shallow landsliding events triggered by intense rainfalls; through this approach, the susceptibility and the pluviometric triggering scenario maps will be improved by means of finer calibration of the involved factors.  相似文献   

3.
The paper describes a methodology to detect landslide triggering scenarios in geological homogeneous areas and for some specific landslide categories. In these scenarios, the rainfall–landslide relationship as well as the pluviometric load conditions influencing slope instability have to be investigated.The methodology is applied to an area located in northern Calabria (Italy) and affected by widespread and different slope instability phenomena. Outcropped, fractured, and deeply weathered crystalline rock masses, determining geologic homogeneous conditions, are present. In the same area, suitable and homogeneous climatic features have also been found.According to the methodology adopted, the hydrologic analysis of rainfall time-series is initially carried out notwithstanding historical data concerning landslide mobilization, but using simple models to determine critical pluviometric scenarios for the three landslide categories: shallow, medium-deep, and deep. Landslide-triggering scenarios individualized according to this procedure are less significant as compared to the landslide mobilization detected in the study area by means of historical research and ascribed to the three landslide categories according to geomorphologic analysis.Subsequently, the possible landslide triggering scenarios are outlined by carefully investigating the hydrologic analysis limited to the periods identified according to the historical data.In the study area and approximately for all the areas characterized by the outcrop of fractured and deeply weathered crystalline rocks, significant triggering scenarios can be outlined. In particular, shallow landslide triggers could be activated by rainfall events with intensities exceeding 90 mm/day and/or with amounts exceeding 160 mm. As for medium-deep and deep landslides, triggering mechanisms are more complicated; and effective rainfall contribution must be taken into account compared to groundwater storage. Moreover, a more complex link between deep landslides and precipitation is confirmed.The results obtained to date highlight the potential of this methodology, which enables us to define and progressively improve the knowledge framework by means of a work sequence integrating different disciplinary tools and results.  相似文献   

4.
This paper deals with the heuristic approach used for landslide hazard zonation along the coastal slopes and cliffs of the Cilento region between Agropoli and Sapri (Italy). This sector of coastline (about 118 km in length) is formed mainly of Mesozoic carbonates and Miocene flysch; Quaternary marine sandstones together with beach sands also crop out. Due to the destructive force of the waves, the coastline is affected by several landslides (mainly rock-falls and slides). The major geomorphological, geological and structural features of about 154 slopes and cliffs have been analysed and several parameters affecting the rock-masses were detected and measured. These parameters deal with topographical, geological, geomechanical, environmental and wave hydraulic characteristics of the studied area. In order to perform the heuristic approach, the Rock Engineering Systems (RES) proposed by Hudson was adopted with several modifications. The main steps of this work were: (1) the choice of parameters relevant to landslide hazard zonation, (2) the analysis of binary interaction between parameters, (3) the weighting of interaction importance, (4) the rating assignment to different classes of parameter values and (5) the final computation of an “Instability Index” (I.I.). A database containing the measured parameters was prepared, and using an interaction matrix, the outputs were linked into a Geographic Information System. It contains the following elements: geological and geomorphological features, historical data regarding landslides, images and values of I.I. for the studied slopes and cliffs. If new landslides occur or near-shore engineered structures are built, then the I.I. values will be automatically upgraded.Values of the I.I. were grouped into 3 classes marking low, medium and high landslide hazard. Both carbonatic rock-masses and flysch were distinguished with respect to I.I. values to show the differences in landslide susceptibility. In fact, rapid but small rock-falls can cause more casualties than moderate speed but large slides. High landslide hazard affects about 41% of carbonate cliffs and about 53% of slopes in arenaceous-marly flysch.  相似文献   

5.
在对金沙江流域内的部分大型水电站工程区内的滑坡分析基础上,以两个滑坡为例,针对水电站工程区讨论了单体滑坡的风险评价方法。选取滑坡稳定性,规模和可能造成的涌浪高度3个指标进行危险性评价;并且定性地将大坝的易损性确定为高、中、低三个等级。在此基础上,对研究区的牛滚函滑坡和东岳庙滑坡进行了危险性分析和易损性评价,得出这两个单体滑坡的风险分析结果:牛滚函滑坡为低度风险,东岳庙滑坡为中度风险。研究成果为水电站工程区滑坡减灾防灾与风险管理提供了科学依据。  相似文献   

6.
Sanjit K. Deb  Aly I. El-Kadi   《Geomorphology》2009,108(3-4):219-233
The deterministic Stability INdex MAPping (SINMAP) model, which integrates a mechanistic infinite-slope stability model and a hydrological model, was applied to assess susceptibility of slopes in 32 shallow-landslide-prone watersheds of the eastern to southern areas of Oahu, Hawaii, USA. Input to the model includes a 10-m Digital Elevation Model (DEM), an inventory of storm-induced landslides that occurred from 1949 to 2006, and listings of soil-strength and hydrological parameters including transmissivity and steady-state recharge. The study area of ca. 384 km2 was divided into four calibration regions with different geotechnical and hydrological characteristics. All parameter values were separately calibrated using observed landslides as references. The study used a quasi-dynamic scenario of soil wetness resulting from extreme daily rainfall events with a return period of 50 years. The return period was based on almost-90-year-long (1919–2007) daily rainfall records from 26 raingauge stations in the study area. Output of the SINMAP model includes slope-stability-index-distribution maps, slope-versus-specific-catchment-area charts, and statistical summaries for each region.The SINMAP model assessed susceptibility at the locations of all 226 observed shallow landslides and classified these susceptible areas as unstable. About 55% of the study area was predicted as highly unstable, highlighting a critical island problem. The SINMAP predictions were compared to an existing debris-flow-hazard map. Areas classified as unstable in the current study were classified as low-to-moderate and moderate-to-high debris-flow hazard risks by the prior mapping. The slope-stability maps provided by this study will aid in explaining the causes of known landslides, making emergency decisions, and, ultimately mitigating future landslide risks. The maps may be further improved by incorporating heterogeneous and anisotropic soil properties and spatial and temporal variation of rainfalls as well as by improving the accuracy of the DEM and the locations of shallow landslide initiation.  相似文献   

7.
本文以云南省大理白族自治州为例,综合考量生态风险源、受体、暴露响应过程及生态终点,采用信息量模型评估滑坡灾害危险性,基于景观格局指数表征生态脆弱性,并将生态系统服务纳入风险损失的定量表征,定量评估流域滑坡灾害生态风险。结果表明:① 低于1800 m高程、15°~25°坡度、小于0.31植被覆盖指数等10方面因素构成了诱发大理州滑坡灾害的最佳信息量组合,全州普遍处于滑坡灾害危险性中高水平,且西北低、东南高;② 生态脆弱性高值区主要集中在红河流域南部、金沙江流域东南部、澜沧江流域中部;③ 低生态损失流域的水源涵养、粮食供给服务相对较差,生态损失中等流域的净初级生产、土壤保持服务优势明显,高生态损失流域则具有较强的粮食供给和水源涵养服务;④ 基于高中低3种生态风险等级和“高危险—低脆弱—低损失”等8种风险结构,全州367个小流域可划分出避让监测预警区、生态保护恢复区、避让保护兼顾区、自然适应调控区等4种风险防范类型区。  相似文献   

8.
Representative rainfall thresholds for landslides in the Nepal Himalaya   总被引:14,自引:0,他引:14  
Measuring some 2400 km in length, the Himalaya accommodate millions of people in northern India and Pakistan, Nepal, Bhutan, and parts of other Asian nations. Every year, especially during monsoon rains, landslides and related natural events in these mountains cause tremendous damage to lives, property, infrastructure, and environment. In the context of the Himalaya, however, the rainfall thresholds for landslide initiation are not well understood. This paper describes regional aspects of rainfall thresholds for landslides in the Himalaya. Some 677 landslides occurring from 1951 to 2006 were studied to analyze rainfall thresholds. Out of the 677 landslides, however, only 193 associated with rainfall data were analyzed to yield a threshold relationship between rainfall intensity, rainfall duration, and landslide initiation. The threshold relationship fitted to the lower boundary of the field defined by landslide-triggering rainfall events is = 73.90D− 0.79 (I = rainfall intensity in mm h− 1 and = duration in hours), revealing that when the daily precipitation exceeds 144 mm, the risk of landslides on Himalayan mountain slopes is high. Normalized rainfall intensity–duration relationships and landslide initiation thresholds were established from the data after normalizing rainfall-intensity data with respect to mean annual precipitation (MAP) as an index in which NI = 1.10D− 0.59 (NI = normalized intensity in h− 1). Finally, the role of antecedent rainfall in causing landslides was also investigated by considering daily rainfall during failure and the cumulative rainfall to discover at what point antecedent rainfall plays an important role in Himalayan landslide processes. Rainfall thresholds presented in this paper are generalized so they can be used in landslide warning systems in the Nepal Himalaya.  相似文献   

9.
During the last decade, slope failures were reported in a 500 km2 study area in the Geba–Werei catchment, northern Ethiopia, a region where landslides were not considered an important hazard before. Field observations, however, revealed that many of the failures were actually reactivations of old deep-seated landslides after land use changes. Therefore, this study was conducted (1) to explore the importance of environmental factors controlling landslide occurrence and (2) to estimate future landslide susceptibility. A landslide inventory map of the study area derived from aerial photograph interpretation and field checks shows the location of 57 landslides and six zones with multiple landslides, mainly complex slides and debris flows. In total 14.8% of the area is affected by an old landslide. For the landslide susceptibility modelling, weights of evidence (WofE), was applied and five different models were produced. After comparison of the models and spatial validation using Receiver Operating Characteristic curves and Kappa values, a model combining data on elevation, hillslope gradient, aspect, geology and distance to faults was selected. This model confirmed our hypothesis that deep-seated landslides are located on hillslopes with a moderate slope gradient (i.e. 5°–13°). The depletion areas are expected on and along the border of plateaus where weathered basalts rich in smectite clays are found, and the landslide debris is expected to accumulate on the Amba Aradam sandstone and upper Antalo limestone. As future landslides are believed to occur on inherently unstable hillslopes similar to those where deep-seated landslides occurred, the classified landslide susceptibility map allows delineating zones where human interventions decreasing slope stability might cause slope failures. The results obtained demonstrate that the applied methodology could be used in similar areas where information on the location of landslides is essential for present-day hazard analysis.  相似文献   

10.
The Radicofani Basin, stretching about 30 km NW–SE, is an intra-Central Apennine basin connected to Pliocene–Pleistocene extensional tectonics. It consists of an Early to Middle Pliocene succession including essentially shelf pelites. In the Radicofani area, province of Siena (Tuscany region), morphodynamic processes are very frequent with widespread badlands and rapidly evolving mudflows. In order to evaluate the general instability of the Radicofani area, geological and geomorphological surveys were carried out. The 1954, 1990 and 2003 aerial surveys allowed a comparison of the changes in the various morphological aspects of the study area, which suggested an increase in slope instability with time. A new complex translational landslide evolving into mudflows, activated during the winter of 2003, was monitored using an experimental system based on terrestrial LIDAR (Light Detection and Ranging) and GPS (Global Positioning System) technologies. This system allowed the monitoring of the morphologic and volumetric evolution of the landslide. A comparison of the monitoring data of October 2004, June 2005, May 2006 and May 2007 points out that the evolution is characterised by the sliding of displaced materials. A volume of about 1300 m3 of materials was removed during the period 2004–2005, 300 m3 for 2005–2006, and 400 m3 for 2006–2007. The greater initial mass movement probably reflects a greater static imbalance during the early period of landslide movement and increased rainfall. Therefore, the proposed monitoring system methodology allows the numerical evaluation of the landslide morphological evolution and to validate the landslide evolution model based on geological and geomorphological field surveys.  相似文献   

11.
Multi-scale gravitational instabilities are widespread in the Coastal Ranges of the North Island of New Zealand. We document here a detailed analysis of the Waitawhiti landslide complex, located in the core of the Tawhero syncline, and investigate the potential landslides triggering factors in the area. Four contiguous large slides form the Waitawhiti complex. These slides involve fine-grained Miocene sandstones and massive fractured siltstones. Sliding occurs mostly along nearly horizontal strata. All slides are bounded laterally and/or distally by deep-incised valleys. Three gas seeps evidencing thermogenic gas release have been discovered in the vicinity of the slides. We propose that river incision, continuously removing distal buttresses, is the main destabilizing factor in the area. However, additional factors, such as tectonic activity and intense rainfall, cannot be excluded. We also propose that fluid overpressure, reducing the effective shear strength at the base of low-permeability layers, may have influenced the triggering of landslides in the Waitawhiti area.  相似文献   

12.
Xilin Liu  Junzhong Lei 《Geomorphology》2003,52(3-4):181-191
Based on the definitions of the United Nations, the assessment of risk involves the evaluation of both hazard and vulnerability. This forms the basis of a generalized assessment model of debris flow risk. Hazard is a measure of the threatening degree of an extreme event and is expressed theoretically as a function of event magnitude and frequency of occurrence. Mathematically, it is the definite integral area under the magnitude–frequency curve. Based on the need for a model applicable in regions that lack data, a new method that incorporates theoretical concepts with empirical analysis is presented to calculate the regional hazardousness of debris flows. Debris flow hazard can be estimated from gully density, mean annual rainfall and percentage of cultivated land on steep slope. Vulnerability is defined as the potential total maximum losses due to a potential damaging phenomenon for a specified area and during a reference period. On a regional scale, it is dependent on the fixed assets, gross domestic product, land resources and population density, as well as age, education and wealth of the inhabitants. A nonlinear, power-function model to compute the vulnerability degree is presented. An application of the proposed method to Zhaotong prefecture of Yunnan province, SW China, provides high accuracy and reasonable risk estimates. The highest risk of debris flow is in Zhaotong county with a value of 0.48; the lowest risk of debris flow is in Yanjin county with a value of 0.16. The other counties have debris flow risks ranging from 0.22 to 0.46. This provides an approach for assessing the regional debris flow risk and a basis for the formulation of a regional risk management policy in Zhaotong prefecture.  相似文献   

13.
The distribution of a large number of clay slides in the Målselv valley, northern Norway, is analysed and put into context with the stratigraphic organization of the valley-fill sediments. About 32% of the landslides larger than 104 m3 occur close to the valley margins, where mud is either exposed or at shallow depth. About 57% of the landslides occur mid-valley, where relatively thin (< 15 m) coarse-grained deltaic sediments overlay fine-grained marine and glaciomarine sediments, and about 11% of the landslides occur in front of ice-contact deposits. The slide-prone areas are all characterized by the occurrence of heterogeneous sediments (interbedded clay, silt and sand), in addition to the presence of steep slopes eroded by rivers. The heterogeneous nature of the sediments probably enhanced groundwater drainage and leaching of salts from the clay, increasing sensitivity. Thus, the distribution and organization of the valley-fill sediments and groundwater drainage probably controlled the position of the slide scars and sliding planes. Since deglaciation of the valley (11,500 BP–present), isostatic rebound has enhanced fluvial incision and the creation of steep slopes due to a fall in relative sea level of up to 80 m.Arcuate-shaped, ‘bottleneck’ landslide scars ranging from c. 104 to 107 m3 in size is the dominant morphological signature of the slides, typical for quick clay slides or earth flows involving fluid mud. Their most common triggering mechanism is probably erosion at the toe slopes by the river Målselv or its tributaries. River erosion close to the valley margin, where glaciomarine and marine sediments are present, seems to give the most severe slides. The overall valley-fill organization controls the distribution of clay slides, which may apply to other fjord valleys having similar sediment distribution.  相似文献   

14.
Landslides in blanket peat on Cuilcagh Mountain, northwest Ireland   总被引:1,自引:0,他引:1  
The northern and eastern sides of the Cuilcagh Mountain upland, in northwest Ireland, are mantled with over 50 km2 of blanket bog that has experienced an unusually high spatial and temporal frequency of peat mass movements. In all, 29 peaty-debris slides, nine bog slides, two peat slides and five more peat landslides of uncertain type have been recorded within this study area. More than 27 km2 of this peatland has been afforded several levels of statutory protection as well as international recognition of its geo-environmental importance. Field and laboratory investigations of the peat at several of the more recent failure sites showed it to be typical of Irish and Pennine (northern England) blanket bogs in most physical and hydrological respects. Field geomorphological evidence and modelling of stability thresholds indicate that the particular susceptibility of the Cuilcagh Mountain blanket bog to failure arises from two local factors: (i) the attainment of threshold maximum peat depths on the East Cuilcagh plateau, and (ii) the unconformable deposition of thin layers of glacial till (in places) and blanket peat over the pre-existing topographic surface formed from the major shale formations that underlie the northern slopes. With two exceptions, there is no conclusive evidence that human activities and management strategies for the area have had any significant influence on the occurrence of the peat landslides. The high frequency of large rainfall events since 1961 that did not trigger landslides suggests that failures are unlikely to become more frequent in response to climate change effects because they are controlled by slowly changing internal thresholds.  相似文献   

15.
基于GIS的洪水灾害风险区划研究   总被引:133,自引:5,他引:128  
洪水灾害区划是洪灾评估与管理的重要内容,本文在分析洪灾形成的各主要因子的基础上,提出了基于地理信息系统的洪灾风险区划指标模型,并结合辽河流域具体情况,以降雨、地形和区域社会经济易损为主要指标,得出了辽河流域洪灾风险综合区别。  相似文献   

16.
Accurate and realistic characterizations of flood hazards on desert piedmonts and playas are increasingly important given the rapid urbanization of arid regions. Flood behavior in arid fluvial systems differs greatly from that of the perennial rivers upon which most conventional flood hazard assessment methods are based. Additionally, hazard assessments may vary widely between studies or even contradict other maps. This study's chief objective was to compare and evaluate landscape interpretation and hazard assessment between types of maps depicting assessments of flood risk in Ivanpah Valley, NV, as a case study. As a secondary goal, we explain likely causes of discrepancy between data sets to ameliorate confusion for map users. Four maps, including three different flood hazard assessments of Ivanpah Valley, NV, were compared: (i) a regulatory map prepared by FEMA, (ii) a soil survey map prepared by NRCS, (iii) a surficial geologic map, and (iv) a flood hazard map derived from the surficial geologic map, both of which were prepared by NBMG. GIS comparisons revealed that only 3.4% (33.9 km2) of Ivanpah Valley was found to lie within a FEMA floodplain, while the geologic flood hazard map indicated that ~ 44% of Ivanpah Valley runs some risk of flooding (Fig. 2D). Due to differences in mapping methodology and scale, NRCS data could not be quantitatively compared, and other comparisons were complicated by differences in flood hazard class criteria and terminology between maps. Owing to its scale and scope of attribute data, the surficial geologic map provides the most useful information on flood hazards for land-use planning. This research has implications for future soil geomorphic mapping and flood risk mitigation on desert piedmonts and playas. The Ivanpah Valley study area also includes the location of a planned new international airport, thus this study has immediate implications for urban development and land-use planning near Las Vegas, NV.  相似文献   

17.
京津冀地区县域单元地质灾害风险评估   总被引:5,自引:3,他引:2  
以京津冀地区为例,探索县域单元的地质灾害风险评估方法。通过测算地质灾害危险性与承灾体易损性,以定性综合评估的方式实现县域单元地质灾害风险评估。实际评估中,将承灾体易损性分为人口安全易损性与资产易损性,分别用因灾死亡人口比与因灾直接经济损失比加以表征;再以国土资源部2001-2015年地质灾害灾情数据为基础,参考1950-2000年灾情数据,提出人口安全易损性与资产易损性的分级标准,并在京津冀地区进行了评估。结果表明:研究区整体地质灾害风险低,204个评估单元中仅有6个为中风险区,包括河北省涞源县、涞水县、武安市、青龙满族自治县、北京石景山区、延庆区,其余198个为低风险区,与实际情况相符。此方法快捷简便、数据可连续获取,符合建立资源环境承载能力监测预警机制要求。空间差异化评估结果可为主动防灾减灾、国土空间管理提供支撑。  相似文献   

18.
The objective of this work is twofold: (i) automatically setting up a landslide inventory using a state-of-the art semantic engine based on data mining on online news and (ii) evaluating if the automatically generated inventory can be used to validate a regional scale landslide warning system based on rainfall-thresholds.The semantic engine scanned internet news in real time in a 50 months test period. At the end of the process, an inventory of approximately 900 landslides was automatically set up for the Tuscany region (23,000 km2, Italy). Using a completely automated procedure, the inventory was compared with the outputs of the regional landslide early warning system and a good correspondence was found, e.g. 84% of the events reported in the news is correctly identified by the warning system.On the basis of the obtained results, we conclude that automatic validation of landslide models using geolocalized landslide events feedback is possible. The source of data for validation can be obtained directly from the Internet channel using an appropriate semantic engine dedicated to perform a monitoring of the Google News aggregator.Moreover, validation statistics can be used to evaluate the effectiveness of the predictive model and, if deemed necessary, an update of the rainfall thresholds could be performed to obtain an improvement of the forecasting effectiveness of the warning system.In the near future, the proposed procedure could operate in continuous time and could allow for a periodic update of landslide hazard models and landslide early warning systems with minimum or none human intervention.  相似文献   

19.
Landslide hazard mapping is a fundamental tool for disaster management activities in mountainous terrains. The main purpose of this study is to evaluate the predictive power of weights-of-evidence modelling in landslide hazard assessment in the Lesser Himalaya of Nepal. The modelling was performed within a geographical information system (GIS), to derive a landslide hazard map of the south-western marginal hills of the Kathmandu Valley. Thematic maps representing various factors (e.g., slope, aspect, relief, flow accumulation, distance to drainage, soil depth, engineering soil type, landuse, geology, distance to road and extreme one-day rainfall) that are related to landslide activity were generated, using field data and GIS techniques, at a scale of 1:10,000. Landslide events of the 1970s, 1980s, and 1990s were used to assess the Bayesian probability of landslides in each cell unit with respect to the causative factors. To assess the accuracy of the resulting landslide hazard map, it was correlated with a map of landslides triggered by the 2002 extreme rainfall events. The accuracy of the map was evaluated by various techniques, including the area under the curve, success rate and prediction rate. The resulting landslide hazard value calculated from the old landslide data showed a prediction accuracy of > 80%. The analysis suggests that geomorphological and human-related factors play significant roles in determining the probability value, while geological factors play only minor roles. Finally, after the rectification of the landslide hazard values of the new landslides using those of the old landslides, a landslide hazard map with > 88% prediction accuracy was prepared. The methodology appears to have extensive applicability to the Lesser Himalaya of Nepal, with the limitation that the model's performance is contingent on the availability of data from past landslides.  相似文献   

20.
The socio-economic attribute of geo-hazard made us distinguish it from the traditional engineering geology study. It will get more social benefit from the analysis of the geo-hazard in the socio-economic attribute. The hazard and the vulnerability of the element controls the risk level of the regional geo-hazard. The risk analysis supported by GIS in geo-hazard study is one of the most important directions. Based on the author’s studies in recent years, a risk analysis system of regional geo-hazard (RiskAnly) has been developed on the basis of software MAPGIS. The paper introduces the train of system design, the structure and the workflow of RiskAnly. As a case study, the paper also deals with the risk zonation of the regional landslide hazard of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号