首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Empirical relationships between methane concentration and the rates of its oxidation and emission in the sediment-water-atmosphere system are computed using the experimental data and the data presented in the literature. For the Sea of Azov and the World Ocean the possibility is demonstrated of using the empirically derived formulae to compute the methane cycle elements in aquatic ecosystems. The comparability of methane volumes in the water column and bottom sediments as well as of those oxidized and released from water and sediments computed using these formulae, demonstrates the adequacy of the obtained formulae. It is shown that depending on morphological parameters of reservoirs of aquatic ecosystems and on their volume and area, the ratio of the amounts of methane that is oxidized and released to the atmosphere, changes as well as the rate of its turnover.  相似文献   

2.
Sea ice variability in the Barents Sea and its impact on climate are analyzed using a 465-year control integration of a global coupled atmosphere–ocean–sea ice model. Sensitivity simulations are performed to investigate the response to an isolated sea ice anomaly in the Barents Sea. The interannual variability of sea ice volume in the Barents Sea is mainly determined by variations in sea ice import into Barents Sea from the Central Arctic. This import is primarily driven by the local wind field. Horizontal oceanic heat transport into the Barents Sea is of minor importance for interannual sea ice variations but is important on longer time scales. Events with strong positive sea ice anomalies in the Barents Sea are due to accumulation of sea ice by enhanced sea ice imports and related NAO-like pressure conditions in the years before the event. Sea ice volume and concentration stay above normal in the Barents Sea for about 2 years after an event. This strongly increases the albedo and reduces the ocean heat release to the atmosphere. Consequently, air temperature is much colder than usual in the Barents Sea and surrounding areas. Precipitation is decreased and sea level pressure in the Barents Sea is anomalously high. The large-scale atmospheric response is limited with the main impact being a reduced pressure over Scandinavia in the year after a large ice volume occurs in the Barents Sea. Furthermore, high sea ice volume in the Barents Sea leads to increased sea ice melting and hence reduced surface salinity. Generally, the climate response is smallest in summer and largest in winter and spring.  相似文献   

3.
The effects of Atlantic water inflow on the climate variability in the Barents Sea are studied. Initial data are the series of water temperature at the Kola meridian cross-section, monthly values of ice extent, air temperature at the stations, sea level pressure from the reanalysis data, and sea surface temperature. The methods of multivariate correlation, spectral, and factor analysis and EOF decomposition are used. It was found that variations in the Atlantic water inflow define the main part of interannual variability of sea ice extent, water temperature, and air temperature in the Barents Sea in the cold season. The influence of regional atmospheric circulation on the interannual variability of these parameters is small. The effects that water temperature anomalies in the area of Newfoundland and in the equatorial part of the North Atlantic have on climate parameters in the Barents Sea are discovered. The response of these parameters lags behind the respective anomalies by 9-58 months. The high correlation between them makes it possible to develop the method of statistical forecasting of sea ice extent and water temperature in the Barents Sea with the lead time up to 4 years.  相似文献   

4.
Sea ice plays an important role in the variability of the Labrador Sea especially in its most western part adjacent to an important region of deep convection. Winter-to-winter re-emergence and propagation of both sea-ice concentration (SIC) and sea surface temperature anomalies have been observed following years of high SIC in this region. They have potentially important links to water mass properties and freshwater and heat transports in the subpolar North Atlantic. This article builds on the results of two precursor papers and presents results from a coupled sea-ice–ocean model study of the interannual variability of sea ice in the Labrador Sea. The relationships between SIC and water column properties in the subpolar North Atlantic are assessed. Winters with high SIC and strong surface cooling are found to be conducive to intensified convection. Surface and mid-depth temperature and salinity anomalies are observed in the Labrador Sea and the northwestern North Atlantic during winters with anomalous Labrador Sea SIC. These anomalies are found to propagate along the major circulation patterns in the subpolar North Atlantic and to persist for up to three years.  相似文献   

5.
In the present study, we analyzed the chemical properties and factors impacting the sea fog water during two sea fog events over the northwestern South China Sea in March 2017, and compared our results with those of other regions. The sea fog water during these two events were highly acidic and their average pH was below 3, which was related to the high initial acidifying potential and large amounts of NO3- and SO42- not involved in the neutralization ...  相似文献   

6.
Studied are the interannual variations of physical (temperature, salinity, and relative density) and chemical (dissolved oxygen and biogenic elements) parameters of sea water and chlorophyll a concentration in the Japan Sea in autumn. It is demonstrated that the increase in the water flow from the East China Sea through the Korea (Tsushima) Strait leads to the temperature rise and decrease in salinity and dissolved oxygen content in the surface water layer of the Japan Sea. It is revealed that in the central part of the Japan Sea from 1978 to 2012 trends were observed towards the increase in the content of dissolved inorganic nitrogen N, decrease in the content of inorganic phosphorus, and decrease in the concentration of chlorophyll a at the level of 50 m and its increase in the layer of 0–30 m. The observed trends are explained by the intensification of the effect of coastal water of the East China Sea subjected to the significant anthropogenic load on the water of the central part of the Japan Sea.  相似文献   

7.
Air–sea ice–ocean interactions in the Ross Sea sector form dense waters that feed the global thermohaline circulation. In this paper, we develop the new limited-area ocean–sea ice–atmosphere coupled model TANGO to simulate the Ross Sea sector. TANGO is built up by coupling the atmospheric limited-area model MAR to a regional configuration of the ocean–sea ice model NEMO. A method is then developed to identify the mechanisms by which local coupling affects the simulations. TANGO is shown to simulate realistic sea ice properties and atmospheric surface temperatures. These skills are mostly related to the skills of the stand alone atmospheric and oceanic models used to build TANGO. Nonetheless, air temperatures over ocean and winter sea ice thickness are found to be slightly improved in coupled simulations as compared to standard stand alone ones. Local atmosphere ocean feedbacks over the open ocean are found to significantly influence ocean temperature and salinity. In a stand alone ocean configuration, the dry and cold air produces an ocean cooling through sensible and latent heat loss. In a coupled configuration, the atmosphere is in turn moistened and warmed by the ocean; sensible and latent heat loss is therefore reduced as compared to the stand alone simulations. The atmosphere is found to be less sensitive to local feedbacks than the ocean. Effects of local feedbacks are increased in the coastal area because of the presence of sea ice. It is suggested that slow heat conduction within sea ice could amplify the feedbacks. These local feedbacks result in less sea ice production in polynyas in coupled mode, with a subsequent reduction in deep water formation.  相似文献   

8.
段升妮  姜智娜 《气象学报》2021,79(2):209-228
基于ERA-Interim再分析资料,借助大气模式CAM4,分析了北半球冬季不同月份的平均大气对巴伦支海不同振幅及不同季节海冰扰动的敏感性,并考察了中高纬度典型大气模态的分布变化情况.结果表明,冬季巴伦支海海冰的减少,会导致湍流热通量异常向上、局地异常变暖及水汽含量的异常升高,且相关异常的强度和范围随着海冰减少幅度的减...  相似文献   

9.
基于一个全球气-海-冰耦合模式数值模拟结果,对北半球高纬度地区年际尺度的气-海-冰相互作用进行了分析。在所使用的全球气-海-冰耦合模式中,大气环流模式和陆面过程模式来自国家气候中心,海洋环流模式和海冰模式来自中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室。采用一种逐日通量距平耦合方案实现次网格尺度海冰非均匀条件下大气环流模式和海洋环流模式在高纬地区的耦合。只对50 a模拟结果中的后30 a结果进行了分析。在分析中,首先对滤波后的北半球高纬度地区海平面气压、表面大气温度、海表面温度、海冰密集度及海表面感热通量的标准化距平做联合复经验正交函数分解,取第一模进行重建,然后讨论了在一个循环周期(约4 a)中北半球高纬度地区气-海-冰的作用关系。结果表明:(1)当北大西洋涛动处于正位相时,格陵兰海出现南风异常,使表面大气温度升高,海洋失去感热通量减少,海洋表面温度升高,海冰密集度减小;当北大西洋涛动处于负位相时,格陵兰海出现北风异常,使表面大气温度降低,海洋失去感热通量增多,海洋表面温度降低,海冰密集度增加。巴伦支海变化特点与格陵兰海相似,但在时间上并不完全一致。(2)多年平均而言,北冰洋内部靠近极点区域为冷中心。当北冰洋内部为低压异常时,因异常中心偏向太平洋一侧,使北冰洋内部靠近太平洋部分为暖平流异常,靠近大西洋一侧为冷平流异常。伴随着暖、冷平流异常,这两侧分别出现暖异常和冷异常,海表面给大气的感热通量分别偏少和偏多,上述海区海表面温度分别偏高和偏低,海冰密集度分别偏小和偏大。当北冰洋内部为高压异常时特点正好与上述相反。由上述分析结果可知,在海洋、大气年际循环中,大尺度大气环流变率起主导作用,海洋表面温度和海冰密集度变化主要是对大气环流变化的响应。  相似文献   

10.
A number of technologies have been developed in the Planeta Research Center for Space Hydrometeorology to provide the satellite monitoring of sea ice cover and water parameters for the Caspian Sea. These technologies produce maps of sea ice, sea ice drift, tracking of near-surface water fluxes, automated classification of ice and water objects, surface wind, and sea surface temperature. Satellite-based products are used for operational hydrometeorology and climate studies of the Caspian Sea environment. A specialized web service for the preparation and comprehensive analysis of satellite data on hydrometeorological and ice conditions in the Caspian Sea was developed to provide information on ice cover characteristics, surface wind, and sea surface temperature.  相似文献   

11.
基于1993—2012年TOPEX/Poseidon(T/P)卫星海平面异常SLA(Sea Level Anomaly)数据和FSCR(Climate Forecast System Reanalysis)再分析风场资料,分析黄东海域近20 a海平面的时空分布特征,尤其是不同时间尺度风场影响的变化特征,进而通过区域海洋模式对海面高度短期变化的可能机制进行探讨。结果表明:1)黄东海域海平面多年平均状态为南高北低,近海面季节性风场在岸线分布和海水热膨胀特征下,造成海面冬春季偏低,夏秋季偏高。近20 a黄东海域平均风速逐步减弱,平均海面上升速率为2.9 mm/a。2)风场的短期活动主要为灾害性大风,统计显示冬夏寒潮大风和台风大风均呈频数减少、强度增强的趋势。运用FVCOM(Finite Volume Community Ocean Model)模拟分析台风和寒潮作用下黄东海域海平面的变化,发现台风强风可形成辐散式海流气旋式涡旋,对应海面为下凹负值中心;北路寒潮大风可形成海流反气旋式涡旋,对应海面为上凸正值中心。两类涡旋的强海流部分增强了海面倾斜度。3)强海流部分动能和动量迅速向海水深部下传,无论在深度和强度上,寒潮造成的海流涡旋动能和动量下传比台风涡旋更迅速,更强。这与寒潮降温引起的海洋层结不稳定对流作用有关。  相似文献   

12.

Based on the numerical simulation of water circulation in the Sea of Okhotsk in 1986 to 2015, the impact of deep cyclones on the circulation off the northeastern coast of Sakhalin is studied. The circulation in the Sea of Okhotsk is simulated with the COSMO-Ru-INMOM-CICE model configuration, where the COSMO-Ru and INMOM resolve explicitly the mesoscale atmosphere and ocean dynamics and the CICE resolves the ice cover evolution. The extreme atmospheric events associated with the intensive cyclone activity over the Sea of Okhotsk during the cold season are classified. It is found that high velocity is typical of the cyclones coming to the sea from Sakhalin, and wind speed on the periphery is higher for the cyclones coming to the Sea of Okhotsk from the south and southwest. The analysis of water circulation response off the northeastern coast of Sakhalin demonstrates that the meridional current velocity on the shelf increased by several times from the sea surface to the bottom for all types of cyclones. On the edge of the shelf, southern currents intensified in the surface and bottom layers during the passage of cyclones and at the intermediate depths during the passage of fronts. On the continental slope, southern currents intensified in the surface, intermediate, and bottom layers depending on the type of extreme events.

  相似文献   

13.
海水中颗粒有机碳(POC)是海洋碳循环的基本变量,在海洋碳循环研究中起着关键作用。根据2003—2020年南海区域遥感数据反演的POC数据集,分析了南海海域POC浓度时空变化规律。研究结果表明:在整个研究区POC的年平均浓度变化范围为76.98~83.91 mg/m^(3);POC浓度分布呈现出近岸高、远海低,主要原因为南海近岸浅水海域POC浓度主要受陆源输入和沿岸流影响,远海区域内POC浓度主要受南海环流和水团控制。在季度上,第1—4季度POC浓度平均值为89.62,72.90,79.22,84.86 mg/m^(3);总体上POC浓度呈现出夏季低、冬季高的趋势,主要原因为南海受到冬季的东北季风和夏季的西南季风影响,影响到南海海水混合层的结构变化,浮游植物在冬季比夏季更为繁盛。在月尺度上,1月POC浓度平均值达到最高值;2—4月POC浓度平均值快速下降,5月POC浓度平均值达到最低值;6—12月POC浓度平均值开始缓慢上升。以上研究结论可为南海碳循环、政府碳达峰、碳中和及应对气候变化等提供决策依据。  相似文献   

14.
南海海域海-气耦合模式及其数值模拟试验   总被引:11,自引:1,他引:10  
在NCAR区域气候模式RegGM2和普林斯顿海洋模式POM基础上发展适用于区域海-气相互作用研究的区域海-气耦合模式,模式采用同步耦合、海洋模式将海表温度提供给大气模式,大气模式为海洋模式提供太阳短波辐射、感热能量、潜热通量。海洋与大气模式每15min交换一次通量。耦合过程没有使用通量校正。使用该模式对中国南海区域1995年5-7月大气和海洋进行了模拟试验,将模拟结果与COADS通量强迫的模拟结果  相似文献   

15.
The influence of interannual variability of water transport by the East Kamchatka Current, the Oyashio, and the East Sakhalin Current on the dissolved oxygen concentration in the western subarctic Pacific and the Sea of Okhotsk is considered for studying climate change impact on sea water chemical parameters. It is shown that statistically significant relation is observed between the calculated with the Sverdrup equation interannual variations in water transport with the East Kamchatka Current, the Oyashio, and the East Sakhalin Current and changes in mean sea water level at coastal stations in winter. It is found that the main reason of interannual variability of the dissolved oxygen concentration at isopycnic surfaces in the intermediate water layer (100–800 m) of the Sea of Okhotsk and in the western subarctic Pacific is caused by variations in water transport by the East Kamchatka Current, the Oyashio, and the East Sakhalin Current.  相似文献   

16.
Obtained are the estimates of the Black Sea level trends for the period of 1992–2005 as derived from the tide-gage and satellite altimetry data. An estimated rate of the mean sea level rate calculated from the averaged altimetry data is 7.6 ± 0.3 mm/year that is by 2–3 times higher than the estimates for the previous periods. Such high values of the trend are evidently associated with the sea level variability features at the 10-year temporal scale. The Black Sea level trend is characterized by the high spatial variability: it amounts to 8–9.5 mm/year in the coastal areas of the Black Sea basin that exceeds the trend in the deep-water part by 1.5–2 times (4.5–6 mm/year). Such distribution is an effect of the cyclonic Rim Current intensification. Based on the difference in the sea level trends obtained from in-situ and altimetry measurements, the velocity of the vertical crustal motion is estimated for the Ukrainian coastal stations of the Black Sea.  相似文献   

17.
Based on the simulated ice thickness data from 1949 to 1999, monthly mean temperature data from 160 stations, and monthly mean 1°×1° precipitation data reconstructed from 749 stations in China from 1951 to 2000, the relationship between the Arctic sea ice thickness distribution and the climate of China is analyzed by using the singular value decomposition method. Climate patterns of temperature and precipitation are obtained through the rotated empirical orthogonal function analysis. The results are as follows. (1) Sea ice in Arctic Ocean has a decreasing trend as a whole, and varies with two major periods of 12-14 and 16-20 yr, respectively. (2) When sea ice is thicker in central Arctic Ocean and Beaufort-Chukchi Seas, thinner in Barents-Kara Seas and Baffin Bay-Labrador Sea, precipitation is less in southern China, Tibetan Plateau, and the north part of northeastern China than normal, and vice versa. (3) When sea ice is thinner in the whole Arctic seas, precipitation is less over the middle and lower reaches of Yellow River and north part of northeastern China, more in Tibetan Plateau and south part of northeastern China than normal, and the reverse is also true. (4) When sea ice is thinner in central Arctic Ocean, East Siberian Sea, Beaufort-Chukchi Seas, and Greenland Sea; and thicker in Baffin Bay-Labrador Sea, air temperature is higher in northeastern China, southern Tibetan Plateau, and Hainan Island than normal. (5) When sea ice is thicker in East Siberian Sea 5 months earlier, thinner in Baffin Bay-Labrador Sea 7-15 months earlier, air temperature is lower over the north of Tibetan Plateau and higher in the north part of northwestern China than normal, and a reverse correlation also exists.  相似文献   

18.
Methane emitted into the atmosphere from sources located in the Urengoi natural gas field is estimated from direct methane concentration measurements in the atmospheric boundary layer and modeling. The results of direct profile measurements in the summer-fall season of 2003 are generalized versus the data from the previous field studies and background monitoring of greenhouse gases in the northern polar region. The use of models for calculating the intensity of emission from sources located in the field area together with a set of methane concentration measurements at three altitudes allowed the authors to develop a method of verification of emission from a specific source, a deposit. The method estimates the emission both from part of the field area and from the whole field with an irregular distribution of the intensity of sources across the deposit area.  相似文献   

19.
The interannual atmosphere-ocean-sea ice interaction (AOSI) in high northern latitudes is studied with a global atmosphere-ocean-sea ice coupled model system, in which the model components of atmosphere and land surface are from China National Climate Center and that of ocean and sea ice are from LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences. A daily flux anomaly correction scheme is employed to couple the atmosphere model and the ocean model with the effect of inhomogenity of sea ice in high latitudes is considered. The coupled model system has been run for 50 yr and the results of the last 30 years are analyzed. After the sea level pressure (SLP), surface air temperature (SAT), sea surface temperature (SST), sea ice concentration (SIC), and sea surface sensible heat flux (SHF) are filtered with a digital filter firstly, their normalized anomalies are used to perform the decomposition of combined complex empirical orthogonal function (CCEOF) and then they are reconstructed with the leading mode. The atmosphere-ocean-sea ice interactions in high northern latitudes during a periodical cycle (approximately 4 yr) are analyzed. It is shown that: (1) When the North Atlantic Oscillation (NAO) is in its positive phase, the southerly anomaly appears in the Greenland Sea, SAT increases, the sea loses less SHF, SST increases and SIC decreases accordingly; when the NAO is in its negative phase, the northerly anomaly appears in the Greenland Sea, SAT decreases, the sea loses more SHF, SST decreases and SIC increases accordingly. There are similar features in the Barents Sea, but the phase of evolution in the Barents Sea is different from that in the Greenland Sea. (2) For an average of multi-years, there is a cold center in the inner part of the Arctic Ocean near the North Pole. When there is an anomaly of low pressure, which is closer to the Pacific Ocean, in the inner part of the Arctic Ocean, anomalies of warm advection appear in the region near the Pacif  相似文献   

20.
王慧  隋伟辉 《气象科技》2013,41(4):720-725
利用1988-2010年CCMP(Cross Calibrated Multi-Platform)高时空分辨率10 m风场分析了我国近海海区的大风(6级以上)日数和大风风速的空间分布特征,并且按照中央气象台对近海海区的划分,分析了近海18个海区大风的季节变化特征.我国近海大风日数高值中心及大风风速高值中心都集中于巴士海峡、台湾海峡和南海东北部海域,在巴士海峡和南海东北部海域交界处最高可达140天以上,平均大风风速达到13m/s以上.从季节变化来看,大风日数和大风风速充分体现了东亚季风冬强夏弱的特点.冬半年,大风日数及风速高值中心一直位于东海东北部、台湾海峡、巴士海峡、南海东北部以及南海西南部海域,12月是一年之中大风日数和强度的峰值时期.从4月开始,南海西南部的高值中心消失,而以北海域的高值区的分布基本不变,这种情况一直持续到9月.近海18个海区的季节变化呈现出不同的区域差别,南海中部和南部的4个海域大风日数呈双峰型变化,冬季的12月至次年1月出现最高值,夏季西南季风时期的7-8月出现次高值.除琼州海峡外,包括南海北部海域的其余13个海区高值均在冬季12月至次年1月,低值出现在夏季6-7月.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号