首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New data on the diurnal variability of methane emission in summer (2013-2014) from West Siberia peatland ecosystems are presented. It is demonstrated that diurnal variations in methane emission differ much depending on a peatland ecosystem under study. Diurnal variations in methane emission in the fens and hollows of the ridge-hollow complex (RHC) are revealed as well as their reproducibility in 2013-2014. The maximum emission is registered in the daytime, and the minimum is observed at night. There is no diurnal variation in methane emission in ryams (pine bogs) and ridges of RHC. It is revealed that in the upper layer of peat (at the depth up to 10 cm for hollows and at the depth of 2 and 5 cm for fens) the contribution of temperature variability to methane emission variations in fens and hollows is 15-20%. The multiple linear regression with peat temperature at several depths allows explaining 44-54% of the variability of methane flux from peatlands. No significant correlation between methane fluxes and the temperature of peat and air was identified in the diurnal cycle in ryams and ridges.  相似文献   

2.
The variability noticed in fair weather atmospheric electric field (AEF) recorded at Yangbajin (YBJ, 90°31′50″E, 30°06′38″N), a continental station located at Tibet Plateau, China, during the period 2006–2011, has been examined firstly in relation to the variations of three selected local meteorological parameters. Secondly, a test has been carried out for a hypothesis that numerical reduction on the variations of fair weather AEF data according to the meteorological parameters like air pressure, temperature and relative humidity, could weaken its meteorological effect and thus help to study the variations of AEF. The reduction effectively suppresses the annual variation, but the shape of the diurnal variation remains the same, and is widely different from the Carnegie Curve. Finally, the seasonal effects of diurnal variations are analyzed. The most distinctive characteristics of the fair weather AEF here is that the pattern of diurnal variations exhibits a double fluctuation, which is modulated by the sunrise and sunset effect. The phase of the diurnal curve has a little shift with seasons.  相似文献   

3.
4.
A regional climate model (RCM) has been applied to simulate the diurnal variations of the Asian summer monsoon during the early summer period. The ERA40 reanalysis data and the TRMM precipitation data are used to evaluate the performance of the model. The 5-year simulations show that the RCM could simulate well the diurnal cycle of the monsoon circulation over the region. A strong diurnal variation of circulation over the Tibetan Plateau (TP) can be observed at the 500-hPa level, with strong convergence and upward motion in the late afternoon. The diurnal variation of the 500-hPa relative vorticity over the TP associated with the corresponding diurnal variation of convergence may lead to the formation of a prominent plateau-scale cyclonic circulation over the TP during the evening to midnight period. The simulated diurnal variation of precipitation over land is generally better than that over the ocean, particularly over the regions close to the TP such as the Bangladesh region in the southern flank of the TP, where the well-known nocturnal maximum in precipitation is well captured by the RCM. However, the late-afternoon maximum in precipitation over the Southeast Asia region is not well simulated by the RCM. The model results suggest that the diurnal variation of precipitation over the southern flank of the TP is associated with the strong diurnal variation in the circulation over the TP.  相似文献   

5.
Using hourly rain-gauge measurements for the period 2004?C2007, differences in diurnal variation in summer (June?CAugust) precipitation are investigated in four distinct areas of Beijing: the urban area (UA), suburban area (SA), north mountainous area (NMA), and south mountainous area (SMA), which are distinguished empirically based on underlying surface conditions and verified with a statistical rotated empirical orthogonal function. The diurnal cycles and spatial patterns in seasonal mean precipitation amount, intensity, and frequency in the four areas are compared. Results show that the four areas have distinct diurnal variation patterns in precipitation amounts, with a single peak observed in UA and NMA in the late afternoon, which are 80?% and 121?% higher than their daily average, respectively, and two peaks in SA during the late afternoon and early morning with magnitudes exceeding the daily mean by 76?% and 29?%, respectively. There are also two peaks in SMA: a weaker nocturnal diurnal peak and an afternoon peak. The minimum amounts of rainfall observed in the forenoon in UA, SA, and SMA are 53?%, 47?%, and 57?% lower than the daily mean in each area, respectively, and that observed in the early morning in NMA is 50?% lower than the daily mean. The diurnal variations in precipitation intensities resemble those for precipitation amount in all four areas, but more intense precipitation is observed in SA (2.4?mm/h) than in UA (2.2?mm/h). The lowest frequency for the whole day is observed in UA, whereas the highest frequency occurs in the mountainous areas in the daytime, especially in the late afternoon in SMA. Diurnal variations in surface air temperature and divergence fields in the four areas are further investigated to interpret the physical mechanisms that underlie the spatial and temporal differences in summer diurnal precipitation, and the results indicate the possible dominance of the local circulation arising from mountain?Cvalley wind and the differences in underlying surface heating between the urban, suburban, and mountainous areas of Beijing.  相似文献   

6.
The diurnal variations of gaseous pollutants and the dynamical and thermodynamic structures of the atmospheric boundary layer (ABE) in the Beijing area from January to March 2001 are analyzed in this study using data from the Beijing City Air Pollution Observation Field Experiment (BECAPEX). A heavy pollution day (22 February) and a good air quality day (24 February) are selected and individually analyzed and compared to reveal the relationships between gaseous pollutants and the diurnal variations of the ABL. The results show that gaseous pollutant concentrations exhibit a double-peak-double-valley-type diurnal variation and have similar trends but with different magnitudes at different sites in Beijing. The diurnal variation of the gaseous pollutant concentrations is closely related to (with a 1-2 hour delay of) changes in the atmospheric stability and the mean kinetic energy in the ABL.  相似文献   

7.
Microphysical and radiative effects of ice clouds on diurnal variations of tropical convective and stratiform rainfall are examined with the equilibrium simulation data from three experiments conducted with a two-dimensional cloud resolving model with imposed temporally and zonally invariant winds and sea surface temperature and zero mean vertical velocity. The experiment without ice radiative effects is compared with the control experiment with ice microphysics (both the ice radiative and microphysical effects) to study effects of ice radiative effects on diurnal rainfall variations whereas it is compared with the experiment without ice microphysics to examine ice microphysical effects on the diurnal rainfall variations. The ice radiative processes mainly affect diurnal cycle of convective rainfall whereas the ice microphysical processes have important impacts on the diurnal cycles of both convective and stratiform rainfall. Turning off the ice radiative effects generally enhances convective rainfall during the morning and evening and suppresses convective rainfall in the afternoon whereas turning off the ice microphysical effects generally suppresses convective and stratiform rainfall during the morning and enhances convective and stratiform rainfall in the afternoon and evening. The ice radiative and microphysical effects on the diurnal cycle of surface rainfall are mainly associated with that of vapor condensation and deposition, which is controlled by air temperature through saturation specific humidity. The ice effects on the diurnal cycle of local temperature tendency are largely explained by that of latent heating since the diurnal cycle of radiation is insensitive to the ice effects.  相似文献   

8.
The diurnal variation of surface winds off the coast of Oregon is described and compared with a recent analysis of winds off the coast of Peru. The Oregon wind speeds have a distinct 24-h periodicity, while the Peru wind speeds were reported to have an irregular 12-h variation. The long-and trans-shore components of both winds exhibit 24-h periodicities; the ratio of the long-shore to trans-shore diurnal amplitudes off Oregon is 2.8, twice the ratio found off Peru. Although meteorological conditions off Oregon were quasi-stationary during the period investigated, there were considerable day-to-day variations in diurnal amplitudes and phases. Diurnal amplitudes were found to be correlated with the daily mean long-shore winds.  相似文献   

9.
利用安徽省寿县站边界层综合观测试验资料,对近地面层风、气温、湿度等微气象要素及感热通量、潜热通量、摩擦速度进行综合分析,总结2005年淮河中游雨季开始前后大气边界层的微气象学基本特征及其异同。结果表明:雨季前,气温、相对湿度有明显的日变化,呈单峰单谷型分布;伴随雨季的开始,近地面层气温下降、相对湿度加大,风速波动增大,且各要素日变化减小。6—7月淮河中游的潜热通量远大于感热通量。边界层要素的变化对淮河雨季的开始和结束具有一定的指示意义。  相似文献   

10.
Continuous measurements of ozone and its precursors including NO, NO2, and CO at an urban site (32°03′N, 118°44′E) in Nanjing, China during the period from January 2000 to February 2003 are presented. The effects of local meteorological conditions and distant transports associated with seasonal changed Asian monsoons on the temporal variations of O3 and its precursors are studied by statistical, backward trajectory, and episode analyses. The diurnal variation in O3 shows high concentrations during daytime and low concentrations during late night and early morning, while the precursors show high concentrations during night and early morning and low concentrations during daytime. The diurnal variations in air pollutants are closely related to those in local meteorological conditions. Both temperature and wind speed have significant positive correlations with O3 and significant negative correlations with the precursors. Relative humidity has a significant negative correlation with O3 and significant positive correlations with the precursors. The seasonal variation in O3 shows low concentrations in late autumn and winter and high concentrations in late spring and early summer, while the precursors show high concentrations in late autumn and winter and low concentrations in summer. Local mobile and stationary sources make a great contribution to the precursors, but distant transports also play a very important role in the seasonal variations of the air pollutants. The distant transport associated with the southeastern maritime monsoon contributes substantially to the O3 because the originally clean maritime air mass is polluted when passing over the highly industrialized and urbanized areas in the Yangtze River Delta. The high frequency of this type of air mass in summer causes the fact that a common seasonal characteristic of surface O3 in East Asia, summer minimum, is not observed at this site. The distant transports associated with the northern continental monsoons that dominate in autumn and winter are related to the high concentrations of the precursors in these two seasons. This study can contribute to a better understanding of the O3 pollution in vast inland of China affected by meteorological conditions and the rapid urbanization and industrialization.  相似文献   

11.
The results of research of diurnal and seasonal dynamics of CO2 emission from the oligotrophic swamp surface in the southern taiga subzone of Western Siberia in 2005–2007 are under consideration. During the summertime, the intensity of CO2 emission increases from spring to the midsummer and then decreases by the fall. A mean CO2 emission value was 118 mg CO2/(m2 hour). The analysis of diurnal dynamics of CO2 emission showed that the maximum CO2 flux is observed at 16:00, while the minimum, at 07:00. Mean amplitude of diurnal variations of the CO2 emission is 74 mg CO2/(m2 hour). The relations established between air temperature and CO2 flux allowed calculating carbon dioxide emission for the periods between measurements. It was found that in the summertime, the period between 10:00 and 13:00 was optimal for measuring CO2 emission with a chamber method.  相似文献   

12.
内蒙古草原温室气体排放日变化规律研究   总被引:11,自引:0,他引:11  
采用静态值-气相色谱法研究内蒙古草原温室气体N2O、CO2、CH4与大气交换的日变化规律。CO2日排放变化形式基本相同,和大气交换的总结果是向大气排放,影响草原N2O排放日变化形式的关键是土壤含水量和表层土壤理化特性,日温变化主要影响其日变化强度;影响草原CH4日变化形式的关键因子是土壤水分和供氧状况,而温度和植物的生长状况则影响吸收强度,利用内蒙古草原温室气候排放相对固定的日变化形式,可以对相同生产季内每周1次的观测结果进行矫正。  相似文献   

13.
The effects of sea surface temperature (SST), radiation, cloud microphysics, and diurnal variations on the vertical structure of tropical tropospheric temperature are investigated by analyzing 10 two-dimensional equilibrium cloud-resolving model simulation data. The increase of SST, exclusion of diurnal variation of SST, and inclusion of diurnal variation of solar zenith angle, radiative effects of ice clouds, and ice microphysics could lead to tropical tropospheric warming and increase of tropopause height. The increase of SST and the suppression of its diurnal variation enhance the warming in the lower and upper troposphere, respectively, through increasing latent heat and decreasing IR cooling. The inclusion of diurnal variation of solar zenith angle increases the tropospheric warming through increasing solar heating. The inclusion of cloud radiative effects increases tropospheric warming through suppressing IR cooling in the mid and lower troposphere and enhancing solar heating in the upper troposphere. The inclusion of ice microphysics barely increases warming in the mid and lower troposphere because the warming from ice radiative effects is nearly offset by the cooling from ice microphysical effects, whereas it causes the large warming enhancement in the upper troposphere due to the dominance of ice radiative effects. The tropopause height is increased mainly through the large enhancement of IR cooling.  相似文献   

14.
Summary Cloud microphysical processes associated with the diurnal variations of tropical convection are investigated based on hourly data from a 2D coupled ocean-cloud resolving atmosphere simulation. The model is forced by the large-scale vertical velocity and zonal wind derived from TOGA COARE for a 50-day period. The diurnal composites are carried out in weak diurnal SST variations (case W) and strong diurnal SST signals (case S). The ice water path is larger than the liquid water path in case W than it is in case S. The difference is enhanced in the morning in case W and in the early afternoon in case S when the surface rain rates reach their peaks. Further comparison of cloud microphysics budgets, associated with rainfall peaks, between cases S and W shows that solar heating in case S warms air to reduce the contribution of vapor deposition to cloud growth, which decreases ice water path compared to those in case W. While the collection of cloud water by rain is a major contributor to the surface precipitation in both cases, the melting of precipitation ice (sum of snow and graupel) contributes less to the rainfall in case S than in case W.  相似文献   

15.
青藏高原探空大气水汽偏差及订正方法研究   总被引:4,自引:1,他引:3  
水汽是大气的主要成分和降水的主要物质来源.青藏高原大气水汽分布对区域天气和气候有很大影响,为了探讨探空观测的大气水汽总量(R)资料的可靠性,本文以地基GPS遥感的大气水汽总量(G)为参照标准,对拉萨(1999~2010年)和那曲(2003年)的R进行对比分析和偏差(R-G)订正.结果表明:近10多年拉萨站R比G明显偏小,偏小程度随使用不同的探空仪而异.GZZ-2型机械探空仪和GTS-1型电子探空仪多年平均的PW偏差分别为-8.8%和-3.9%,随机误差分别为17.6%和13.6%.近10多年PW偏差变化呈减少趋势,这与探空仪性能改进有关.分析发现,青藏高原PW偏差具有明显季节变化和日变化特征,夏季比冬季明显,1200 UTC比0000 UTC明显.拉萨站GZZ-2型和GTS-1型探空仪在1200 UTC多年平均的PW偏差分别为-15.8%和-7.3%,在0000 UTC分别为-1.6%和-0.4%.那曲站GZZ-2型探空仪在1200 UTC和0000 UTC的PW偏差分别为-12.4%和-0.3%.分析还表明,太阳辐射加热与气温的日变化和季节变化是造成高原PW偏差日变化和季节变化的重要原因.据此,提出了高原PW偏差的订正方法,并以拉萨和那曲站为例进行PW偏差订正,订正后的PW系统偏差显著减少,随机误差也相应得到了改善.  相似文献   

16.
Summary The behaviour of the wind field at the confluence zone of Terra Nova Bay during a transition period from winter to summer is considered. To explain some observed features the influence of diurnal variations are considered to integrate and complete the analysis based on annual and seasonal variations. Diurnal variations in the buoyancy difference between two main air masses coming from the Revees and Priestley glaciers are assumed to contribute to diurnal alteration of the wind direction at the Nansen ice sheet. The data recorded at three automatic weather stations (AWS) available that period are analysed. Using the wavelet analysis procedure, it is shown that the contribution of one-day variations of some basic meteorological parameters and their gradients (in particular of temperature and pressure) is important and comparable with synoptic ones. On the base of the diurnal variations some aspects of the local circulation have been explained. The basis for the further studies related to the evolution of katabatic winds in this area are also presented. Received August 3, 1998 Revised March 12, 1999  相似文献   

17.
张丽  张立杰  力梅 《广东气象》2014,36(6):50-52
利用深圳国家基本气象站观测数据和竹子林大气成分站颗粒物、污染气体的浓度资料,对典型灰霾过程粒子浓度的日变化的特征进行了对比分析,结果表明:在变性高压脊控制下,污染物浓度在晚上交通高峰期达到最大值,人为排放和稳定的层结提供了有利的条件;在热带气旋外围下沉气流控制时,污染物浓度日变化有3个峰值,并且中午的峰值高于早、晚交通高峰期的峰值,光化学污染明显;在低槽或切变线影响下,早、晚交通高峰期的峰值高于中午的峰值,人为源排放成为主要的污染物来源。  相似文献   

18.
Diurnal and annual variations of CO2, O3, SO2, black carbon and condensation nuclei and their source areas were studied by utilizing air parcel trajectories and tropospheric concentration measurements at a boreal GAW site in Pallas, Finland. The average growth trend of CO2 was about 2.5 ppm yr−1 according to a 4-yr measurement period starting in October 1996. The annual cycle of CO2 showed concentration difference of about 19 ppm between the summer minimum and winter maximum. The diurnal cycle was most pronounced during July and August. The variation between daily minimum and maximum was about 5 ppm. There was a diurnal cycle in aerosol concentrations during spring and summer. Diurnal variation in ozone concentrations was weak. According to trajectory analysis the site was equally affected by continental and marine air masses. During summer the contribution of continental air increased, although the southernmost influences decreased. During daytime in summer the source areas of CO2 were mainly located in the northern parts of the Central Europe, while during winter the sources were more evenly distributed. Ozone showed similar source areas during summer, while during winter, unlike CO2, high concentrations were observed in air arriving from the sea. Sulfur dioxide sources were more northern (Kola peninsula and further east) and CO2 sources west-weighted in comparison to sources of black carbon. Source areas of black carbon were similar to source areas of aerosols during winter. Aerosol source area distributions showed signs of marine sources during spring and summer.  相似文献   

19.
Windsonde data gathered over a nine-year period at three stations in the Southeast U.S. are stratified by season and by time of observation to provide average profiles depicting the diurnal variations in low-level winds. Significant variations are found (especially during the summer months) in wind speed, angle between wind direction and isobars, and the various terms of the kinetic energy budget equation. A qualitative model of the diurnal variations in planetary boundary-layer winds (over land) is developed. From a thesis submitted to the Graduate Faculty of Colorado State University in partial fulfillment of the requirements for the degree, Doctor of Philosophy.  相似文献   

20.
选取中国东部季风区长春、北京、武汉和广州市4个代表性城市,利用2012年9月至2014年8月和2016年1月至2017年12月共4年高密度自动站气温资料,比较了南北不同纬度带城市热岛效应(Urban Heat Island,UHI)强度的时空特征.结果表明:1)长春、北京、武汉和广州市建城区年平均UHII分别为0.96...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号