首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
多年冻土区铁路路基热状况对工程扰动及气候变化的响应   总被引:2,自引:0,他引:2  
基于青藏铁路沿线长期地温监测资料,对天然场地及铁路路基下部的浅层地温、多年冻土上限及下伏冻土地温动态变化过程进行对比分析,研究多年冻土区铁路路基热状况对于工程扰动及气候变化的响应过程.监测结果表明,路基修筑后边坡热效应显著,由此导致路基下部多年冻土热状况的不对称分布,必须引起足够的重视.块石路基修筑后,下部多年冻土上限抬升显著,其中阴坡路肩下抬升幅度普遍较阳坡路肩下显著.普通路基修筑后,在年平均地温低于?0.6~?0.7℃的地区下部多年冻土上限有不同程度的抬升,而在年平均地温高于?0.6℃的地区下部冻土上限则出现了一定程度的下降,其中阳坡路肩下降幅显著.受块石层冷却降温作用,低温冻土区块石路基下部浅层冻土地温有明显降温过程,而在高温冻土区这一降温趋势只存在于阴坡路肩下.对于普通路基,多年冻土上限抬升后,浅层冻土地温存在一定的升温过程.对于气候变暖,低温冻土区多年冻土的响应主要集中体现在冻土升温上,而高温冻土区多年冻土的响应则主要表现为冻土上限下降,冻土厚度减小.基于上述监测结果,可将目前青藏铁路路基热状况分为稳定型(低温冻土区块石路基)、亚稳定型(低温冻土区普通路基及高温冻土区块石路基)和不稳定型(高温冻土区普通路基).  相似文献   

2.
青藏公路沿线冻土的地温特征及退化方式   总被引:1,自引:0,他引:1  
金会军  赵林  王绍令  晋锐 《中国科学D辑》2006,36(11):1009-1019
青藏高原多年冻土(以下简称冻土)具有地域分布广、厚度薄及稳定性差等特征. 过去几十年的气候变暖背景下, 冻土广泛退化, 地温升高, 夏季最大融化深度加深, 冬季冻结深度减小. 冻土已经产生下引式、上引式和侧引式退化. 冻土层厚度减薄, 或者在某些地区彻底消失. 冻土退化模式研究在冻土学、寒区工程和寒区环境管理方面具有重要意义. 由南至北穿越560 km冻土区的青藏公路沿线(简称青藏线)冻土在青藏高原腹地具有很好的代表性. 在水平方向上, 冻土退化在多年冻土下界附近的零星冻土分布区、融区边缘和岛状冻土区表现得更为明显. 当最大季节融化深度超过最大季节冻结深度时, 冻土开始下引式退化; 通常形成融化夹层, 造成多年冻土和季节冻结层不衔接. 当多年冻土层中地温梯度减小到小于下伏或周边融土层时, 则产生上引式或侧引式退化. 下引式退化进程可分为4个阶段: (1) 初始退化阶段, (2) 加速退化阶段, (3) 融化夹层阶段, (4) 最终多年冻土彻底融化为季节冻土阶段. 当多年冻土中地温梯度降至下伏融土层地温梯度以下时, 则产生上引式退化. 3种类型冻土温度曲线(稳定型、退化型和相变过渡型)展现了这些退化模式. 虽然存在不同地段和类型的地温特征, 三种退化模式的各种组合最终将使多年冻土消融, 转变成季节冻土. 过去25年来, 青藏线冻土年平均下引式退化速率变化在6~25 cm, 年平均上引式退化速率在12~30 cm, 零星多年冻土区年平均侧引式退化速率为62~94 cm. 这些观测结果超过所报道的过去20年来阿拉斯加亚北极不连续冻土区4 cm的年平均退化速率, 蒙古国不连续冻土区的4~7 cm的年平均退化速率, 以及雅库悌共和国亚北极和阿拉斯加北极稳定性冻土区退化速率.  相似文献   

3.
以IPCC SRES A2、A1B、B1三种气候变化模式为基础,利用数值方法研究了青藏直流联网工程冻土区装配式基础的冻融过程以及活动层、融化深度、地温的变化规律.结果表明:工程扰动和气候变暖改变了冻土的热状态,促进了冻土退化,均为影响基础长期稳定性的重要因素,其中混凝土桩基的强化导热作用加剧了冻融过程,气候升温导致活动层厚度增加,土层温度升高;随着深度的增加,冻土响应减弱,冻土温度变化幅度越小;在三种升温模式下50年后融化深度分别达到3.12m、5.07m和6.02m,而同期天然场地活动层厚度为2.07m、4.37 m、5.62 m,说明冻土对不同升温模式的响应程度不同,且中心冻土在气候变暖和工程扰动双重影响下退化更快;从第10年到第50年,这三种模式下桩基中心融化速率分别为1.5 cm·α-1,6.2 cm·α-1,8.6 cm·α-1,即随着升温速率的增加,土层融化深度增加,冻土退化速度加快;低升温率时冻土变化主要受工程作用,而在较高升温模式下冻土退化则主要受气候变暖的影响.  相似文献   

4.
人类工程活动下冻土环境变化评价模型   总被引:16,自引:4,他引:16  
提出用冻土热稳定性、热融敏感性及地表景观稳定性来评价人类工程活动下冻土环境变化, 并提出冻土环境的定量评价模型. 利用青藏公路沿线28个地温监测资料, 对冻土环境评价模型进行计算. 分析冻土热融敏感性与冻融过程和季节融化深度之间的关系; 冻土热稳定性与多年冻土顶板温度、年平均地温及季节融化深度之间的关系; 地表景观稳定性与冻融灾害之间的关系及产生的可能性. 结果表明, 冻土热稳定性、热融敏感性和地表景观稳定性可用来评价和预报人类工程活动下冻土环境的变化特征.  相似文献   

5.
以青海共和至玉树高等级公路中的实际设计断面为模型,通过数值模拟研究斜插式热棒路基和斜插式热棒-XPS复合路基的降温效果。结果表明,在气候变暖背景下,两种路基在一定时期内可以降低其下部多年冻土温度,提高路基下冻土上限,但随着气温逐渐升高,两种路基反压护道下多年冻土中有融化核出现,并且斜插式热棒路基下多年冻土中及斜插式热棒-XPS复合路基填土中有融化核出现;增加XPS保温板,在一定时期内可以提升斜插式热棒路基的降温能力,使斜插式热棒-XPS复合路基降温效果优于斜插式热棒路基,且前者冻土上限始终高于后者,但对于增强其长期降温的效果并不显著。  相似文献   

6.
选择高寒生态系统植被覆盖度、生物生产力和土壤养分与组成结构等要素和冻土环境的冻土上限深度、冻土厚度和冻土地温等指标, 分析了冻土环境与高寒生态系统之间的相互关系, 并基于气温与冻土温度间的统计模型, 建立了高寒生态系统对冻土环境变化的响应分析模型. 通过对青藏高原昆仑山-唐古拉山区域冻土环境要素在人类工程活动与气候变化双重作用下的变化及其对高寒生态系统的影响研究, 表明青藏高原冻土环境变化对高寒草甸和高寒沼泽草甸生态系统影响强烈, 随冻土上限深度增加, 高寒草甸植被覆盖度和生物生产量均呈现较为显著递减趋势, 并导致高寒草甸草地土壤有机质含量呈指数形式下降, 土壤表层砂砾石含量增加而显著粗砺化; 高寒草原生态系统与冻土环境的关系相对微弱; 全球气候变化及其作用下的冻土环境变化导致该区域近15年间高寒沼泽草甸生态系统分布面积锐减28.11%, 高寒草甸生态分布面积减少了7.98%. 在不同气温升高的情景下, 未来50年, 不同地貌单元的高寒草甸生态系统对冻土环境变化的响应程度不同, 其中位于低山和平原区的高寒草甸生态系统将产生较显著的退化, 从植被覆盖度和生物生产量两方面, 定量给出了不同气候变化情境下不同典型地区和地貌单元的高寒生态系统变化特征. 未来在工程活动中采取有效的冻土环境保护措施, 对高原冻土工程稳定性和维护高寒生态系统都具有重要意义.  相似文献   

7.

多年冻土活动层变化导致冻土区大范围地面变形,严重破坏区域内基础设施和水文地质条件,亟需加强活动层季节冻融过程的观测研究.本文提出一种基于分布式目标的小基线集时序InSAR(DSs-SBAS)的冻土形变监测方法.该方法采用分布式目标提取和特征值分解算法,并结合基于地温-形变约束关系的参考点选取新策略,提高了冻土形变监测结果的时空分辨率和可靠性.以祁连山黑河西支源头的野牛沟为研究区域,通过对27景Sentinel-1 SAR影像进行时序InSAR分析,获取了2014-2016年该区多年冻土的形变时间序列和年均形变速率,并利用Stefan模型联合地温数据估算其季节性形变幅度.实地踏勘和结果分析表明:(1)研究区大部分多年冻土处于稳定状态(-1.0~+1.0 cm·a-1),在地形陡峭的南坡边缘及含冰量丰富的野牛沟河上游两侧沟底部分区域存在较大形变;(2)区域内冻土形变时间序列呈现年周期变化,冻土冻融形变存在季节性周期形变和季节性波动下沉两种形变特征,形变幅度和速率最大可达6.0 cm和-3.0 cm·a-1;(3)不同区域的活动层冻结/融化始日和冻土形变存在明显差异,主要和冻土地貌、土壤类型以及活动层厚度有关.本文提出的方法在青藏高原多年冻土区大范围冻融监测和活动层厚度反演研究方面具有很大的应用潜力.

  相似文献   

8.
气候变化条件下东北地区多年冻土变化预测   总被引:3,自引:0,他引:3       下载免费PDF全文
东北多年冻土(除非指明是季节冻土,以下将多年冻土简称冻土)是中国第二大冻土分布区,主要发育"兴安-贝加尔型"冻土.由于处在欧亚大陆冻土区南缘,冻土的热稳定性差,寒区生态的敏感性强.在气候变暖条件下,冻土已经和正在发生着"三向"退化.为预测冻土南界和地温变化,根据47个气象站资料并在SHAW模型对植被影响地表温度修正的基础上,建立了冻土地表温度分布的等效纬度模型.结合非稳态热传导模型的有限元数值计算,以多模型结合的方法,进一步计算和分析了目前、50年和100年后冻土地温分区变化.结果表明,在目前地表温度为1.5℃范围,仍可残留冻土.以0.048℃a-1气温递增速率,在目前地表温度为0.5℃和-0.5℃的区域,50年和100年后各自仍有可能存在冻土;冻土面积将由现在的2.57×105 km2各自减至1.84×105和1.29×105 km2,分别减少28.4%和49.8%,且东部退化幅度大于西部.同时,区域地温升高,冻土厚度减薄;稳定型(年平均地温Tcp≤-1.0℃)冻土面积逐渐减小,将由现在的1.07×105 km2分别减少至8.8×104 km2(50年后)和5.6×104 km2(100年后).相应地,不稳定型(Tcp〉-1.0℃)多年冻土和季节冻土的面积增加,冻土南界将显著北移.冻土环境的变化,将给东北寒区工程设施和生态环境带来重要影响.减少或避免人为地改变冻土赋存条件,是保护冻土环境较可行的途径.  相似文献   

9.
连续性分类系统的适用性与数据匮乏是过去青藏高原多年冻土制图的两个主要问题.文章基于高海拔多年冻土稳定性分类体系,在模型对比基础上,利用支持向量回归模型集合模拟了划分多年冻土稳定性的年平均地温,生产了空间分辨率为1km的青藏高原多年冻土稳定性分布图.制图中使用了青藏高原2005~2015年间共237个钻孔年平均地温(年变化深度处温度)观测数据,利用统计学习方法融合了地面观测与遥感冻结指数、融化指数、积雪日数、叶面积指数、土壤容重、高程和高质量的土壤水分再分析资料.该图显示,青藏高原多年冻土面积约115.02(105.47~129.59)×104km2,其中,极稳定型(?0.5℃)多年冻土面积分别为0.86×104、9.62×104、38.45×104、42.29×104和23.80×104km2,分别占青藏高原多年冻土的0.75%、8.36%、33.43%、36.77%和20.69%.以模拟的多年冻土稳定性分布图为基础,定义了划分多年冻土稳定型的遥感年平均地表温度和冻结数标准,这两个标准对于多年冻土稳定型的划分结果一致性分别达到69.6%和75.3%,对于多年冻土范围划分的一致性分别达到了90.1%和91.8%.  相似文献   

10.
气候持续变暖条件下青藏高原多年冻土变化趋势数值模拟   总被引:17,自引:2,他引:17  
应用数值方法模拟了气候持续以0.04℃/a速度变暖条件下,我国青藏高原多年冻土热状况可能发生的变化趋势,计算结果表明,在计算所假设条件下,当初始地面年平均温度为0.0,-0.5,-1.5,-2.5,-3.5和-4.5℃时,14m深度上的年平均地温分别为-0.11,-0.59,-1.52,-2.45,-3.21和-4.32℃,多年冻土厚度为16.8,29.0,54.1,79.7,112.1和131.0m时,经50a的环境持续升温后,14m深度上的年平均地温分别升高为0.0,0.0,-0.36,-1.23,-2.16和-3.07℃;初始年平均地面温度高于-1.112的多年冻土由衔接型变为不衔接型,低于-1.1℃时,多年冻土上限分别由初始的1.8,1.6,1.4,和1.2m增大为2.2,2.0,1.8,1.6m,且多年冻土厚度不发生大的变化。所以,如果未来气侯以文中的速度或低于该速度变暖,50a内我国青藏高原多年冻土分布将不会发生大的明显变化。  相似文献   

11.
青藏公路沿线多年冻土与公路相互作用研究   总被引:26,自引:1,他引:26  
为了研究多年冻土与公路相互作用和特征, 青藏公路沿线建立了8个监测场地, 监测内容包括天然状态下活动层厚度、沥青路面下季节冻融深度、多年冻土顶板温度和路基稳定性. 研究结果表明, 由于沥青路面具有强烈的吸热作用和较弱的蒸发过程, 从而改变了地表能量平衡状态, 使沥青路面下的季节冻融深度和多年冻土顶板温度变化均大于天然状态, 并引起了融化下沉和冻胀等工程地质问题频繁发生, 对路基稳定性产生严重影响.  相似文献   

12.
多年冻土地区的地下水系统中的冻结层上水不仅是寒区能水循环中的一个关键组成部分,而且与寒区生态环境变化关系密切,在寒区水文学和寒区陆面过程研究中具有十分重要的作用,但因其动态过程的复杂性和观测研究的诸多困难,尚缺乏对其运动规律、驱动因素与机制的系统认知.在青藏高原连续多年冻土区风火山左冒西孔曲,选择典型高寒草甸坡面,通过2年坡上和坡下不同观测孔地下水动态连续观测,分析了冻结层上水的季节动态变化及其在坡面上的空间分异规律以及活动层的冻融作用对冻结层上水动态变化的影响作用.结果表明,冻结层上水位的季节动态变化具有与活动层土壤温度和水分相似的冻融过程,活动层土壤温度控制了冻结层上水季节动态格局,深层(60 cm以下)土壤水分和不同地带地下水补给来源决定了冻结层上水水位动态变化的位相和幅度.地温与水位动态之间具有显著的Boltzmann函数关系,但在不同活动层深度与不同坡面位置,土壤温度对地下水位动态影响的阈值范围不同,坡面上冻结层上水位动态具有显著的空间变异性.地表覆盖变化和气候变暖将必然引起冻结层上水动态、地下水与河水间水力关系的变化,从而引起流域整体水文过程的改变.  相似文献   

13.
陆面过程的研究对于更好地认识气候和天气系统的演变规律、陆地-大气水热交换过程、人类活动对气候和环境的影响等具有重要意义. 建立了综合考虑土壤冻融、土壤水汽通量、植被覆盖和陆面-大气近地层水热交换的一维冻土-植被-大气连续体模型, 模拟了固液相变、汽态水迁移、土壤水、汽、热耦合迁移等过程, 反映了液态水从未冻区向冻结区迁移、冻结及其引起的潜热迁移的冻土物理本质, 也反映了汽态水分从高温区向低温区迁移所引起的温度及水分场的变化, 并对模型进行了检验. 水分运动方程采用混合Richards方程, 可适应各种边界条件. 土壤水热传输模型求解引入了修正的Picard迭代法, 不仅使计算迭代收敛更快, 而且能更好地保证数值计算过程中的水量平衡. 结合GAME/Tibet实验1998年5月份、7月份的观测数据, 应用该模型对青藏高原安多观测点的水热交换过程进行了模拟分析. 模拟结果表明: 土壤的冻融过程对地温变化会产生负反馈作用; 若净辐射相同, 土壤表层含水量较高的情况下考虑冻结时其地热通量在冰融化时明显增加, 显热通量减少, 而潜热通量变化不大, 但是冻结时各通量的变化不明显; 而土壤发生融化时, 尽管地热通量增加, 但是地表温度仍然减小; 土壤发生冻结时, 尽管土壤负温要比不考虑冻结时高, 但整体上热通量变化不大.  相似文献   

14.
未来50与100 a青藏高原多年冻土变化情景预测   总被引:20,自引:0,他引:20  
政府间气候变化委员会(IPCC)估计, 21世纪全球平均气温将增加1.4~5.8℃. 据预测未来50 a青藏高原气温可能上升2.2~2.6℃. 在建立冻土数值预测模型的基础上, 计算了在两种气温年升温率情景下青藏高原多年冻土自然平均状态50和100 a后可能发生的变化. 预测结果表明, 气候年增温0.02℃情形下, 50 a后多年冻土面积比现在缩小约8.8%, 年平均地温Tcp>−0.11℃的高温冻土地带将退化, 100 a后, 冻土面积减少13.4%, Tcp > −0.5℃的区域可能发生退化; 如果升温率为0.052℃/a, 青藏高原在未来50 a后退化13.5%, 100 a后退化达46%, Tcp>−2℃的区域均可能退化成季节冻土甚至非冻土. 预测结果对青藏高原寒区工程规划和建设的辅助决策具有重要意义.  相似文献   

15.
多年冻土塑性形变特性是理解其应力响应性态及过载退化的关键,也是近年来冻土工程和岩土工程学科研究领域的热点问题。基于三轴试验测得9%、12%和15%含水量条件下-1℃、-2℃多年冻土弹性模量、黏聚力和内摩擦角等土层物理力学参数,建立典型铁路路基模型,分析天然地震荷载作用下多年冻土区铁路路基在温度升高、强度退化作用下的塑性形变规律。结果表明:随着温度升高冻土强度退化,-1℃的塑性形变大于-2℃各坡脚、路基中心处的塑性形变;左右坡脚处塑性形变具有对称性分布规律;典型铁路路基试验土层地温由-2℃升高到-1℃,9%含水量试验土层塑性应变左坡脚放大3.5倍、右坡脚放大4.9倍,12%含水量试验土层塑性应变左坡脚放大1.6倍、右坡脚放大2.5倍。多年冻土退化条件下12%含水量的试验土层表现出良好的稳定性,在同等受力条件下塑性变形增长最小。  相似文献   

16.
我国季冻土分布广泛,跨越了我国一半以上的省份,随着经济的发展及国家"一带一路"战略的提出,季冻区的交通基础设施建设规模也越来越大。经调查统计,季冻土路基常常会出现冻胀、融沉、沉陷、翻浆、边坡滑塌等一系列的路基病害,威胁行车安全,造成严重的经济损失。因此从季冻土覆盖范围、经济发展、国家战略布局和季冻土路基灾害的角度上,研究季冻土的强度变形特性显得尤为重要。季冻土的相关研究很不成熟,截至目前,连基本的冻融循环下抗剪强度指标的变化模式都存在很大争议。造成争议的根源就在于季冻土试验技术的不成熟,这种不成熟表现在多个方面,缺乏季冻土试验标准以及受试验仪器限制等等。因此注重试验的研究才能合理揭示季冻土的强度变形特性。本文对冻融循环土试验技术、季冻土静力学本构理论、冻融循环土强度理论和季冻土残余应变理论中的几个关键问题开展研究,提出季冻土制样新标准,得到了冻融循环下土应力应变关系变化规律与抗剪强度指标变化模式,给出了抗剪强度指标计算公式,得到了更符合实际的季冻土残余应变发展模式与更符合实际的振陷参数。主要工作和成果如下:(1)发现了常规土制样标准对季冻土试验的不适用性,指出了冻结融化使试样密度离散性放大是目前季冻土试验缺乏稳定性的原因,提出了减少土试样密度离散性的思想,建立了季冻土制样的新标准,并通过三轴试验验证了该标准的可靠性。(2)按照季冻土制样新标准,提出了冻融循环下三种典型土类应力应变变化模式及静强度变化模式,得到了围压、冻融循环次数和土类对季冻土静力特性的影响规律。(3)提出了冻融循环修正系数的概念,给出了冻融循环下典型土类抗剪强度指标变化模式,提出了粘聚力和内摩擦角冻融循环修正曲线和计算公式,阐明了其工程应用方法。(4)基于新型低温动三轴仪及改进的试验条件,以更符合实际的季冻土埋藏条件、动应力水平和冻结固结过程,提出了季冻土冻结期的残余变形发展规律和振陷计算参数。  相似文献   

17.
科学合理地分析铁路路基块石层在机车荷载作用下的动力传递机理,对于多年冻土区路基工程稳定性预测有着重要的指导意义,同时对于在青藏高原多年冻土地区建设高坝大库等重要水利工程的动力稳定性分析也具有重要的借鉴作用。通过选取青藏铁路北麓河段典型块石路基结构开展机车通过实时强震动测试,获得了机车通过时的实时加速度数据。在现场测试的基础上,基于有限元分析软件, 运用二维非线性动力响应分析方法对多年冻土区块石路基结构在机车荷载作用下动力传递特性、位移响应特性和应力应变特性进行了数值模拟分析,并通过对比分析素土路基的动力响应特征,科学分析青藏铁路路基块石层在机车荷载作用下的动力传递机理。研究结果表明,块石层的铺设可以有效限制机车荷载产生的加速度向路基深处传递,减小机车振动对路基结构的影响,有助于保护冻土路基的稳定性;块石层的铺设可以较好地减小机车荷载作用下路基的沉降变形,在相同机车荷载作用下块石结构路基的最大沉降量仅为0.9 mm,而素土路基的最大沉降量可达1.9 mm;块石层的铺设可以改变机车荷载作用下路基内部的应力应变状态,使得路基内部最大主应力增大,而最大剪应变幅值、范围均减小。  相似文献   

18.
汤郎-易门断裂位于青藏高原东南缘,走向近南北,按地貌特征及区域构造背景可将其划分为北段(营盘村-插甸断裂)、中段(插甸-碧城断裂)及南段(碧城-易门断裂)。针对汤郎-易门断裂构造地貌差异,利用30 m分辨率的DEM数据,基于GIS技术提取与断裂活动相关的水系,并计算其陡峭指数,结合野外考察及遥感影像讨论断裂在不同分段的活动习性与地貌特征。研究发现,区域内降水及基岩抗风化能力对亚流域陡峭指数的影响较小,认为陡峭指数能够较好地反映汤郎-易门断裂的垂直构造运动。陡峭指数显示,断裂走向呈两端高、中间低的特点,其分段性与前人划分结果具有较好一致性,所表征的基岩垂直活动性差异可作为断裂带活动分段的依据。断裂带东西侧陡峭指数在不同分段上表现出差异性,北段断裂东西侧陡峭指数显示出东、西向差异性抬升不显著,其与地貌上断裂北段表现的左旋走滑运动一致,以水平运动为主;断裂中段及南段陡峭指数在东西侧表现出东高西低的特点,显示东侧较西侧基岩抬升更快,可能以垂直差异运动为主。  相似文献   

19.
青藏高原多年冻土退化过程及方式   总被引:1,自引:0,他引:1  
气候变暖势必引起多年冻土的退化,基于数值模拟结果,将多年冻土退化过程按地温的深度剖面曲线形态划分为初始阶段、升温阶段、0梯度阶段、不衔接阶段和消失阶段.青藏高原多年冻土多是晚更新世残留,而全新世期间总体上是一个退化过程.根据青藏高原几个典型地区多年冻土深孔测温数据,判断目前高原多年冻土在其退化历史中所处的地位:高山地区处于升温阶段;中低山地区处于升温阶段末期;高平原和河谷盆地的多年冻土处于0梯度阶段;连续多年冻土下界附近及岛状冻土地区,正处于由0梯度向不衔接阶段过渡,多年冻结层边缘在萎缩,处于消失阶段.多年冻结层消融(消失)存在自下而上和自上而下两种方向.在升温阶段,多年冻土层中的热通量小于来自下伏地层中的地热通量时,部分地热流用于多年冻土底板相变耗热,发生自下而上的消融,随着多年冻土层中的地温梯度减小,用于底板消融的热量增加,直到地温曲线完全达到0梯度时,所有的地热流都用于多年冻土层融化潜热消耗,但其上部同时存在“热补偿”和“季节补偿”作用可以延缓多年冻土的消失;对于低温厚层多年冻土,当地面温度升高至可以抵消热补偿效应时,活动层中出现热积累,厚度增加,直至出现不衔接现象,同时存在“季节反补偿”作用,加剧了这一过程.  相似文献   

20.
地震引起的滑坡对生命、环境和经济造成了巨大的威胁。目前,对于地震作用下边坡稳定性的研究主要集中在单一滑动面破坏模式,对于具有多个潜在滑动面边坡的地震稳定性研究比较欠缺。基于此,利用有限差分软件FLAC对不同边坡进行地震稳定性数值模拟,对比分析不同强度地震动作用下均质土体、分层土体和含软弱夹层土体边坡的滑动面演化过程和永久变形分布特征。结果表明:对于均质边坡,地震引起的滑动面为单一的整体滑动面,地震动强度的增加仅导致沿滑动面的永久变形量增大;对于非均质边坡,在地震作用下还可能形成通过土层交界面的局部滑动变形,且地震作用下最先形成和发生变形的滑动面与静力条件下得到的最小安全系数对应的最危险滑动面一致;同时,地震引起的边坡浅层和深层变形破坏存在复杂的相互影响,当局部浅层滑动先发生时,地震动的进一步增大很容易诱发更深层的坡体滑动,而当深层滑动先发生时,由于塑性变形影响地震惯性力向上部坡体的传播,浅层坡体的进一步滑动变形相对较难被触发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号