首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The observed energy spectra in synchrotron sources are power laws,N (E)=KE , with the distribution in peaked around 2.5. These are consistent with initially injected spectra with between 1 and 2, subsequently steepened by synchrotron losses. Contrary to the results of Kardashev (1962), it is shown that statistical acceleration when coupled with synchrotron losses lead naturally to the formation of flat stationary spectra with 1. These stationary spectra have bends near the energy at which synchrotron losses balance the energy gains by acceleration. Above this bend the spectrum tends to =2. The time evolution of an initial spectrum towards the stationary spectrum is investigated. It is suggested that the initially flat spectra with 1 to 1.5 observed in some variable sources result from an incomplete approach to the stationary spectrum, and that in sources with constant acceleration spectra with 2 are to be expected.  相似文献   

2.
We determine the momentum distribution of the relativistic particles near the Crab pulsar from the observed X- and -ray spectra (103109 eV), provided that the curvature radiation is responsible for it. The power law spectrum for the relativistic electrons,f() –5, reproduces a close fit to the observed high-energy photon spectrum. The theoretically determined upper limit to the momentum (due to radiation damping), M 8×106, corresponds to the upper cut-off energy of the -ray spectrum, 109 eV. The lower limit to the momentum, m 1.8×105, is chosen such that flattening of the X-ray spectrum below 10 keV is simulated. The number density of these electrons is found to be much higher than the Goldreich-Julian density. We also discuss pulse shape and polarization of high-energy photons. The extremely high density of particles and the steep momentum spectrum are difficult to understand. This may imply that another, more efficient, mechanism is in operation.  相似文献   

3.
It is shown that inelastic proton collisions in extragalactic radio sources can account for their radio and -ray emissions. The proton Lorentz-factor p responsible for -ray emission is estimated to lie between 1.4 and 86. But for the radio emission (with e ~ 103-104) the estimated p values lie between 7 to 300. The estimates of total particle and magnetic energy for a typical radio source is in agreement with equipartition theory.  相似文献   

4.
The relationship between the production of -ray emitting particles and non-thermal soft X-ray line broadening is investigated. A model of particle acceleration via the stochastic interaction with MHD turbulence is assumed and the time development of the wave energy density derived under the condition of energy conservation between waves and particles. The inferred numbers and energy distribution of accelerated protons for four -ray flares are used to define the wave energy density and its temporal development. The presence of Alfvén wave turbulence is considered as the source of the non-thermal motions in the ambient plasma. These motions are observed as excess widths in the soft X-ray line emission from these events. The decay of the waves via the particle acceleration process is compared with the observed decays of this non-thermal line broadening. Our results show that both the -ray emission and excess soft X-ray line widths in these flares can be explained by the single physical phenomenon of Alfvén wave turbulence.  相似文献   

5.
During a balloon flight in September 1979 of the MISO low-energy -ray telescope, the BL Lac-object MkN 501 was studied in the hard X-ray range above 30 keV and in the low energy -ray range up to 19 MeV. No statistically significant X- and -ray fluxes were detected. The implications of the upper limits obtained are discussed in the light of the relativistic jet theories recently proposed.  相似文献   

6.
Charged particle acceleration is considered by a radiation flux from a star or hot spot in X-ray pulsars. It is shown that for any distance from the star there exists the upper velocity limit up to which a particle can be accelerated by radiation. This critical velocity does not depend on the luminosity of the spot. Near the hot spot surface the critical velocityv0.65c. These results are applied to plasma acceleration inX-ray pulsars. The mechanism is advanced, of -ray generation in the course of plasma accretion, onto a neutron star. It is shown that in the presence of a large magnetic field and high luminosity of the spot the relativistic electron-position avalanche may appear. The optical depth of the electron-positron cloud achieves the value of order one. The X-ray quanta emitted by the spot are scattered by relativistic (2.6) electron-positron pairs and are transformed into -radiation. Hard quanta with energy 1 MeV leave the generation region in the narrow cone 0.25.  相似文献   

7.
Exact solutions of the gravitational field equations for a Bianchi type I anisotropic space-time, filled with a viscous cosmological fluid obeying an equation of state of the form p = , 0 1, are obtained. We investigate both the viscous Zeldovich ( = 1) and < 1 fluid cases, with constant and time varying (proportional to the mean Hubble factor) shear and bulk viscosity coefficients. It is shown that independently of the matter content, the equation of state and the time dependence of the shear and bulk viscosity coefficients, a viscous Bianchi type I universe experiences a transition to an inflationary era. Due to dissipative processes, the mean anisotropy and the shear of the Bianchi type I universe tend very rapidly to zero.  相似文献   

8.
A general formula is derived for calculating the -ray spectrum resulting from the annihilation of cosmic-ray positrons. This formula is used to calculate annihilation--ray spectra from various equilibrium spectra of secondary galactic positrons. These spectra are then compared with the -ray spectra produced by other astrophysical processes.Particular attention is paid to the form of the -ray spectrum resulting from the annihilation of positrons having kinetic energies below 5 keV. It is found that for mean leakage times out of the galaxy of less than 400 million years, most of the positrons annihilating near rest come from the -decay of unstable nuclei produced in cosmic-ray p-C12, p-N14, and p-O16 interactions, rather than from pi-meson decay. It is further found that the large majority of these positrons will annihilate from an S state of positronium and that 3/4 of these will produce a three-photon annihilation continuum rather than the two-photon line spectrum at 0.51 MeV. The results of numerical calculations of the -ray fluxes from these processes are given. It is concluded that annihilation -rays from the galactic halo may remain forever masked by a metagalactic continuum. However, an 0.51 MeV line from the disk may well be detectable. It is most reasonable to assume that this line is formed predominantly by the annihilation of the CNO -decay positrons. Under this assumption, the intensity of the line becomes a sensitive measure of the galactic cosmic-ray flux below 1000 MeV/nucleon.  相似文献   

9.
The new class of -ray spectra from impulsive flares without nuclear -ray lines is compared with bremsstrahlung spectra of energetic electrons undergoing stochastic acceleration, Coulomb and synchrotron losses. The remarkable agreement of both the produced -spectra from the precipitated electrons and the electron spectra measured in the interplanetary space leads to the conclusion that seed population and acceleration process are identical for both classes of electrons. A new estimate of the electron bremsstrahlung contribution in -spectra of impulsive solar flares seems to be necessary.  相似文献   

10.
Three active galaxies, generally classified as Seyferts, have been discovered recently to be powerful, low energy -ray sources. The similarity between their spectral characteristics and those of the cosmic background at -ray energies suggests that these objects could make a significant contribution to this diffuse flux. This contribution has been assessed using two different number densities of -ray-emitting Seyfert galaxies based on optical and X-ray data. The comparison of the estimated and measured diffuse -ray background intensities is used to gain a deeper understanding of the metabolism of Seyfert galaxies.  相似文献   

11.
On the basis of the erenkov line emission theory in the optically thick case, a new interpretation of intensity ratios H/H and H/H in broad-line radio-galaxies (BLRGs) is reported. Calculation shows that if the theoretical ratio H/H is just taken to be the mean observed value 0.21, equivalently, the parameterX(H)=3.0, then the expected ratio H/H=6.70 is almost the same as the observations. By comparing these values with the previous investigations of QSOs (X(H)=20.9), we conclude that the number density of neutral hydrogen gas in BLRGs is almost one order-of-magnitude smaller than that in the QSOs.Preliminary verification of the erenkov line emission has been obtained by Xuet al. (1981) in the laboratory.  相似文献   

12.
Alfvén wave turbulence is considered as the source of the non-thermal line broadenings observed in soft X-rays in solar flares. The waves are assumed to lose energy to particle acceleration and the temporal development for the case of Fermi acceleration,W(k)k –2, is investigated. The decay of the wave energy density is compared to that of the non-thermal velocity for the event of 1980 June 29. The wave energy densities required to explain the degree of non-thermal broadening and its temporal characteristics are consistent with those typically inferred from-ray observations. A relationship between the degree of non-thermal broadening and-ray fluxes is predicted. In general, the larger the-ray flux the shorter the time scales for the decay of the wave energy.  相似文献   

13.
It is shown that bremsstrahlung from electrons with Lorentz factor 1 is suppressed for >p in a plasma with plasma frequency p compared with emission in vacuo. For p the ratio of the power emitted per unit frequency in the plasma to that in vacuo varies as 2.This suppression effect is analogous to the suppression of synchrotron radiation in a plasma (Razin-Tsytovich effect). It is argued that such suppression is a characteristic property of emission by relativistic particles in a plasma.  相似文献   

14.
Wheatland  M.S. 《Solar physics》2003,214(2):361-373
The distribution of times t between coronal mass ejections (CMEs) in the Large Angle and Spectrometric Coronagraph (LASCO) CME catalog for the years 1996–2001 is examined. The distribution exhibits a power-law tail (t) with an index –2.36±0.11 for large waiting times (t>10 hours). The power-law index of the waiting-time distribution varies with the solar cycle: for the years 1996–1998 (a period of low activity), the power-law index is –1.86±0.14, and for the years 1999–2001 (a period of higher activity), the index is –2.98±0.20. The observed CME waiting-time distribution, and its variation with the cycle, may be understood in terms of CMEs occurring as a time-dependent Poisson process. The CME waiting-time distribution is compared with that for greater than C1 class solar flares in the Geostationary Operational Environmental Satellite (GOES) catalog for the same years. The flare and CME waiting-time distributions exhibit power-law tails with very similar indices and time variation.  相似文献   

15.
Lockwood  J. A.  Debrunner  H.  Ryan  J. M. 《Solar physics》1997,173(1):151-176
We have examined six solar neutron events measured by satellite instruments and/or neutron monitors (NM) to understand the relationship between the intensity–time profiles of the -ray lines, the pion-related -rays, and the neutron production. In all six events the solar neutron production was clearly time-extended. We find that neutron emission as detected by NMs most closely follows the emission of pion-related -rays, whereas lower energy neutron production may follow that of nuclear -ray line emissions. Although this distinction is not unexpected, it is safe to say that the 2.223 MeV -ray line from neutron capture on hydrogen is a poor measure of the neutron production at energies >200 MeV. During the three events on 1982, June 3, 1990, May 24 and 1991, June 4 solar neutrons with energies greater than 200 MeV were recorded by NMs. The NM increases on 1982, June 3 and 1990, May 24 can be modeled using the time profile of the pion-related -rays. For the 1991, June 4 event the NM signal was small but lasted for 60 min and the high-energy -ray data available to us are insufficient to conclude unambiguously that the high-energy neutron production followed the pion-related -rays. In the other three events on 1991, June 9, 11, and 15 solar neutrons with energies 10–100 MeV were observed by the COMPTEL -ray instrument on the Compton Gamma Ray Observatory. The duration of the low-energy neutron production on 1991, June 9 corresponded clearly to the high-energy and not to the low-energy -ray emission.  相似文献   

16.
Expressions for the stimulated Compton effect are derived that are complete to order /ge/, where is the photon energy in the laboratory system, and =m 0 C 2 is the electron energy. Explicit formulas are given for the energy flow between a relativistic electron and a radiation field that obeys a power law so that the number of photons is proportional to –m–1. The amount of energy gained by an electron per second is then numerically calculated for conditions suggested by very compact radio sources as a function of the width of the spectrum, the spectral index, and the electron energy.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

17.
The data on the spectrum of the cosmic-ray electron component near the earth, on the radio-spectra of radio-galaxies, quasars and the Crab Nebula, as well as the data pertaining to the X-ray spectrum of the cosmic background, all agree that the sources of cosmic-ray electrons (such as supernovae and galactic nuclei) inject particles characterized by a power spectrumN(E)=KE –0, with 01.5–2.5. A mechanism is known in which the source emits a proton-nuclear component of cosmic rays with a spectrumN n (E)=K n E n, n = + 2, =w cr/(ww cr), wherew cr is the cosmic-ray energy density in the source, andw=w cr+w n+w turb, the total energy density. We obtain =2.5 in agreement with observations on the natural assumption that =0.5. Within the framework of the same model with some additional assumptions, the electrons in the source, as well as those ejected by the source, are shown to have a power-spectrum characterized with 0 n = + 2. Thus the model discussed gives an adequate spectrum for both the proton-nuclear and the electron components of cosmic rays.  相似文献   

18.
Roy  J. -René 《Solar physics》1977,52(1):53-61
The north-south incidence has been studied of 31 white-light flares observed since 1859 and of 1669 events meeting the criteria for major flares of Dodson and Hedeman (1971) for the period 1955–1974. The asymmetry in favor of the northern hemisphere increases strikingly with the importance of the events. Similarly, magnetically complex sunspot groups (Mt. Wilson classes, and) display a more pronounced asymmetry in favor of the north than non-complex groups for 1962–1970. Contrary to the flare asymmetry, the spottedness asymmetry is independent of the size of sunspots.  相似文献   

19.
We study the bimetric theory of gravitation with background metric ik. In contrast to the accepted point of view, in which ik, is a metric given a priori, we assume that ik is a dynamic variable determined from the condition that the total action of the gravitating system must be an extremum. As a result it turns out that (1) ik can be described by the Einstein equation in space-time with the metric ik and (2) the energy-momentum tensor of the graviational field ik, is the source of ik. In this sense ik can be considered a secondary field in relation to gik. We determine the conditions for existence of integral covariant conservation laws. Two of the latter have no analogs in the theory with the background metric given a priori.Translated fromAstrofizika, Vol. 37, No. 3, 1994.The author is grateful to the participants in the seminar of the Department of Theoretical Physics at Erevan State University, and also to W. Bleier, K. A. Bronnikov, V. N. Mel'nikov, and G. Yu. Treder for discussions and valuable remarks. The investigations presented in this paper were partly financed by the International Scientific Fund, grant Ph1-262-0902.  相似文献   

20.
We construct a standard thin disk model taking into account the pressure from both gas and radiation, the opacity contributed by both electron scattering and absorption, and the gravity from both a central object and a disk. A simple and powerful technique for solving the non-linear equations is presented. Through a numerical algorithm for the two equationl for, , , all the disk quantities are expressed as the analytical function of, , . We also discuss the solutions in the limit cases 0, 1 and the parameter range of the linear approximation. From the numerical solutions and limit analyses, we found that it is not necessary to include the self-gravity of the disk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号