首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
We use teleseismic waveform analysis and locally recorded aftershock data to investigate the source processes of the 2004 Baladeh earthquake, which is the only substantial earthquake to have occurred in the central Alborz mountains of Iran in the modern instrumental era. The earthquake involved slip at 10–30 km depth, with a south-dipping aftershock zone also restricted to the range 10–30 km, which is unusually deep for Iran. These observations are consistent with co-seismic slip on a south-dipping thrust that projects to the surface at the sharp topographic front on the north side of the Alborz. This line is often called the Khazar Fault, and is assumed to be a south-dipping thrust which bounds the north side of the Alborz range and the south side of the South Caspian Basin, though its actual structure and significance are not well understood. The lack of shallower aftershocks may be due to the thick pile of saturated, overpressured sediments in the South Caspian basin that are being overthrust by the Alborz. A well-determined earthquake slip vector, in a direction different from the overall shortening direction across the range determined by GPS, confirms a spatial separation ('partitioning') of left-lateral strike-slip and thrust faulting in the Alborz. These strike-slip and thrust fault systems do not intersect within the seismogenic layer on the north side, though they may do so on the south. The earthquake affected the capital, Tehran, and reveals a seismic threat posed by earthquakes north of the Alborz, located on south-dipping thrusts, as well as by earthquakes on the south side of the range, closer to the city.  相似文献   

2.
The propagation of the deformation front in foreland systems is typically accompanied by the incorporation of parts of the basin into wedge‐top piggy‐back basins, this process is likely producing considerable changes to sedimentation rates (SR). Here we investigate the spatial‐temporal evolution of SR for the Tremp–Jaca Basin in the Southern Pyrenees during its evolution from a wedge‐top, foreredeep, forebulge configuration to a wedge‐top stage. SR were controlled by a series of tectonic structures that influenced subsidence distribution and modified the sediment dispersal patterns. We compare the decompacted SR calculated from 12 magnetostratigraphic sections located throughout the Tremp–Jaca Basin represent the full range of depositional environment and times. While the derived long‐term SR range between 9.0 and 84.5 cm/kyr, compiled data at the scale of magnetozones (0.1–2.5 Myr) yield SR that range from 3.0 to 170 cm/kyr. From this analysis, three main types of depocenter are recognized: a regional depocenter in the foredeep depozone; depocenters related to both regional subsidence and salt tectonics in the wedge‐top depozone; and a depocenter related to clastic shelf building showing transgressive and regressive trends with graded and non‐graded episodes. From the evolution of SR we distinguish two stages. The Lutetian Stage (from 49.1–41.2 Ma) portrays a compartmentalized basin characterized by variable SR in dominantly underfilled accommodation areas. The markedly different advance of the deformation front between the Central and Western Pyrenees resulted in a complex distribution of the foreland depozones during this stage. The Bartonian–Priabonian Stage (41.2–36.9 Ma) represents the integration of the whole basin into the wedge‐top, showing a generalized reduction of SR in a mostly overfilled relatively uniform basin. The stacking of basement units in the hinterland during the whole period produced unusually high SR in the wedge‐top depozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号