首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A preliminary U/Pb zircon age determination has been carried out on a grey gneiss of the Eskolabreen Formation, the lowest observable lithostratigraphic unit of Precambrian metamorphic rocks in southern Ny Friesland, NE Spitsbergen. The obtained age, ca. 2, 400 Ma, is considered to be a metamorphic age and suggests an Early Proterozoic tectonothermal event.  相似文献   

2.
The Sichuan Basin and the Songpan‐Ganze terrane, separated by the Longmen Shan fold‐and‐thrust belt (the eastern margin of the Tibetan Plateau), are two main Triassic depositional centres, south of the Qinling‐Dabie orogen. During the Middle–Late Triassic closure of the Paleo‐Tethys Ocean, the Sichuan Basin region, located at the western margin of the Yangtze Block, transitioned from a passive continental margin into a foreland basin. In the meantime, the Songpan‐Granze terrane evolved from a marine turbidite basin into a fold‐and‐thrust belt. To understand if and how the regional sediment routing system adjusted to these tectonic changes, we monitored sediment provenance primarily by using detrital zircon U‐Pb analyses of representative stratigraphic samples from the south‐western edge of the Sichuan Basin. Integration of the results with paleocurrent, sandstone petrology and published detrital zircon data from other parts of the basin identified a marked change in provenance. Early–Middle Triassic samples were dominated by Neoproterozoic (~700–900 Ma) zircons sourced mainly from the northern Kangdian basement, whereas Late Triassic sandstones that contain a more diverse range of zircon ages sourced from the Qinling, Longmen Shan and Songpan‐Ganze terrane. This change reflects a major drainage adjustment in response to the Late Triassic closure of the Paleo‐Tethys Ocean and significant shortening in the Longmen Shan thrust belt and the eastern Songpan‐Ganze terrane. Furthermore, by Late Triassic time, the uplifted northern Kangdian basement had subsided. Considering the eastward paleocurrent and depocenter geometry of the Upper Triassic deposits, subsidence of the northern Kangdian basement probably resulted from eastward shortening and loading of the Songpan‐Ganze terrane over the western margin of the Yangtze Block in response to the Late Triassic collision among Yangtze Block, Yidun arc and Qiangtang terrane along the Ganze‐Litang and Jinshajiang sutures.  相似文献   

3.
Fission track thermogeochronology using detrital apatite and zircon from a synorogenic foreland basin on the northern margin of the Betic Cordillera Internal Zone is used to reconstruct the cooling and unroofing history of the sediment source areas in the Oligo-Miocene mountain belt. Previously, a heavy mineral study on the same sedimentary rocks showed that progressively deeper tectonometamorphic units were being unroofed during the latest Oligocene to middle Miocene at a minimum rate of 3  km Myr−1. The fission track data have further constrained the exhumation history showing that the structurally highest (i.e. shallowest) parts of the mountain belt (Malaguide Complex) cooled relatively slowly during the latest Oligocene–Aquitanian, while the deeper metamorphic units (Alpujarride Complex) cooled at much higher rates (up to 300 °C Myr−1) during the Burdigalian–Langhian. These fast cooling rates from synorogenic detritus are consistent with cooling rates calculated previously for the deeper parts of the early Miocene orogenic belt, using 39Ar–40Ar dating of muscovite, biotite and amphibole from basement metamorphic rocks. Rapid cooling in the early Miocene, which commenced at ≈21  Ma, is attributed to the change in process from erosional to tectonic denudation by orogen-scale extension within the eastern Betic Cordillera.

  相似文献   


4.
The effectiveness of detrital zircon thermochronology as a means of linking hinterland evolution and continental basin sedimentation studies is assessed by using Mesozoic continental sediments from the poorly understood Khorat Plateau Basin in eastern Thailand. New uranium lead (U‐Pb) and fission‐track (FT) zircon data from the Phu Kradung Formation identify age modes at 141 ± 17 and 210 ± 24 Ma (FT) and 2456 ± 4, 2001 ± 4, 251 ± 3, and 168 ± 2 Ma (U‐Pb), which are closely similar to data from the overlying formations. The FT data record post‐metamorphic cooling, whereas the U‐Pb data record zircon growth events in the hinterland. Comparison is made between detrital zircon U‐Pb data from ancient and modern sources across Southeast Asia. The inherent stability of the zircon U‐Pb system means that 250 Myr of post‐orogenic sedimentary recycling fails to change the regional zircon U‐Pb age signature and this precludes use of the U‐Pb approach alone for providing unique provenance information. Although the U‐Pb zircon results are consistent with (but not uniquely diagnostic of) the Qinling Orogenic Belt as the original source terrane for the Khorat Plateau Basin sediments, the zircon FT cooling data are more useful as they provide the key temporal link between basin and hinterland. The youngest zircon FT modes from the Khorat sequence range between 114 ± 6 (Phra Wihan Formation) and 141 ± 17 Ma (Phu Kradung Formation) that correspond to a Late Jurassic/Early Cretaceous reactivation event, which affected the Qinling Belt and adjacent foreland basins. The mechanism for regional Early Cretaceous erosion is identified as Cretaceous collision between the Lhasa Block and Eurasia. Thus, the Khorat Plateau Basin sediments might have originated from a reactivation event that affected a mature hinterland and not an active orogenic belt as postulated in previous models.  相似文献   

5.
《Basin Research》2018,30(Z1):401-423
The Lobo Formation of southwestern New Mexico consists of spatially variable continental successions attributed to the Laramide orogeny (80–40 Myr), although its age and provenance are virtually undocumented. This study combines sedimentological, magnetostratigraphical and geochronological data to infer the timing and origin of the Lobo Formation. Measured sections of Lobo strata at two locations, Capitol Dome in the Florida Mountains and in the Victorio Mountains, indicate significant differences in depositional environments and sediment provenance. At Capitol Dome, where Lobo strata were deposited above a syncline developed in Palaeozoic strata, deposition took place in fluvial, palustrine and marginal lacustrine settings, with alluvial‐fan deposits only at the top of the formation. Combined magnetostratigraphy and a young U–Pb detrital zircon age suggest deposition of the section at Capitol Dome from ~60 to 52 Ma. The Lobo Formation in the Victorio Mountains was deposited in alluvial‐fan and fluvial settings; the age of deposition is poorly bracketed between 66 ± 2 Ma, the weighted‐mean age of two young zircons, and middle Eocene (~40 Ma), the approximate age of overlying volcanic rocks. U–Pb zircon ages from sandstones at the Victorio and Capitol Dome localities indicate that different source rocks provided sediment to the Lobo Formation. Local Proterozoic basement (~1.47–1.45 Ga) dominated the source of the Lobo Formation in the Victorio Mountains, consistent with abundant granitic clasts that are present in the proximal facies there; a diverse range of grain ages suggest that recycled Lower Cretaceous strata provided the dominant source for Lobo Formation sediment at the Capitol Dome locality. The U–Pb data suggest that the depositional systems at the two sites were not connected. Contrasts in depositional setting and detrital zircon provenance indicate that the Palaeogene Lobo Formation in southwest New Mexico was deposited in an assemblage of local depositional settings, possibly in separate structural basins, as a consequence of Laramide tectonics in the region.  相似文献   

6.
Summary. The Jurassic Scisti Silicei Formation forms part of the Lagonegro superimposed tectonic units I and II that are thought to represent the axial and internal margins of the Mesozoic Lagonegro Basin, prior to nappe formation. Sampling was carried out in the lower (Lagonegro) and upper (Pignola) nappes in two differently oriented anticlines. Single and multi-component magnetizations are present. Isothermal remanence acquisition rates show that magnetite and haematite are present which, in most Lagonegro specimens, show the same direction of magnetization. Comparison of the palaeomagnetic directions with those from Jurassic rocks on the stable African craton indicates a 147° anticlockwise rotation of the lower nappe which is similar to 139° previously reported for the upper nappe at Vietri di Potenza. The same comparisons show a 44° clockwise rotation of the upper nappe at Pignola. These results suggest that the doubled nappe structures, sampled some 50 km apart, resulted from their emplacement by translation with little rotation prior to the opening of the Tyrrhenian Sea and that it was the opening of this Sea that caused the predominantly anticlockwise rotation. This work therefore indicates the way in which palaeomagnetic analyses can be used, even within complex allochthonous areas, as an aid to deciphering their tectonic evolution.  相似文献   

7.
《Basin Research》2018,30(5):926-941
Constraining the thermal, burial and uplift/exhumation history of sedimentary basins is crucial in the understanding of upper crustal strain evolution and also has implications for understanding the nature and timing of hydrocarbon maturation and migration. In this study, we use Vitrinite Reflectance (VR) data to elucidate the paleo‐physiography and thermal history of an inverted basin in the foreland of the Atlasic orogeny in Northern Tunisia. In doing so, it is the primary aim of this study to demonstrate how VR techniques may be applied to unravel basin subsidence/uplift history of structural domains and provide valuable insights into the kinematic evolution of sedimentary basins. VR measurements of both the onshore Pelagian Platform and the Tunisian Furrow in Northern Tunisia are used to impose constraints on the deformation history of a long‐lived structural feature in the studied region, namely the Zaghouan Fault. Previous work has shown that this fault was active as an extensional structure in Lower Jurassic to Aptian times, before subsequently being inverted during the Late Cretaceous Eocene Atlas I tectonic event and Upper Miocene Atlas II tectonic event. Quantifying and constraining this latter inversion stage, and shedding light on the roles of structural inheritance and the basin thermal history, are secondary aims of this study. The results of this study show that the Atlas II WNW‐ESE compressive event deformed both the Pelagian Platform and the Tunisian Furrow during Tortonian‐Messinian times. Maximum burial depth for the Pelagian Platform was reached during the Middle to Upper Miocene, i.e. prior to the Atlas II folding event. VR measurements indicate that the Cretaceous to Ypresian section of the Pelagian Platform was buried to a maximum burial depth of ~3 km, using a geothermal gradient of 30°C/km. Cretaceous rock samples VR values show that the hanging wall of the Zaghouan Fault was buried to a maximum depth of <2 km. This suggests that a vertical km‐scale throw along the Zaghouan Fault pre‐dated the Atlas II shortening, and also proves that the fault controlled the subsidence of the Pelagian Platform during the Oligo‐Miocene. Mean exhumation rates of the Pelagian Platform throughout the Messinian to Quaternary were in the order of 0.3 mm/year. However, when the additional effect of Tortonian‐Messinian folding is accounted for, exhumation rates could have reached 0.6–0.7 mm/year.  相似文献   

8.
Pyrolysis–gas chromatography mass spectrometry (py-GC/MS) allows the characterisation of complex macromolecular organic matter. In lakes and wetlands this can potentially be used to assess the preservation/diagenesis and provenance of sediment organic matter. It can complement palaeoenvironmental investigations utilising ‘bulk’ sediment variables such as total organic carbon (TOC) and TOC/total nitrogen ratios. We applied py-GC/MS analyses to a ~32,000-year sediment record from the southern Cape coastline of South Africa. We used the results to evaluate the sources and extent of degradation of organic matter in this semi-arid environment. Marked down-core changes in the relative abundance of multiple pyrolysis products were observed. Correspondence analysis revealed that the major driver of this down-core variability in OM composition was selective preservation/degradation. Samples comprising highly degraded OM are primarily confined to the lower half of the core, older than ~12,000 years, and are characterised by suites of low-molecular-weight aromatic pyrolysis products. Samples rich in organic matter, e.g. surface sediments, are characterised by products derived from fresh emergent or terrestrial vegetation, which include lignin monomers, plant-derived fatty acids and long-chain n-alkanes. Pyrolysates from the late glacial-early Holocene period, approximately mid-way down the core are characterised by distinct suites of long-chain n-alkene/n-alkane doublets, which may reflect the selective preservation of recalcitrant aliphatic macromolecules and/or enhanced inputs of the algal macromolecule algaenan/polymerised algal lipids. Increased TOC, lower δ13C and increased abundance of more labile lignin and fatty acid products at the same depths suggest this period was associated with increased lake primary productivity and enhanced inputs of terrestrial OM. TOC is the only ‘bulk’ parameter correlated with the correspondence analysis axes extracted from the py-GC/MS data. Distinct fluctuations in TOC/total nitrogen ratio are not explained by variation in organo-nitrogen pyrolysis products. Notwithstanding, the study suggests that py-GC/MS has potential to complement palaeolimnological investigations, particularly in regions such as southern Africa, where other paleoenvironmental proxy variables in sediments may be lacking or equivocal.  相似文献   

9.
We propose and test a conceptual framework for evaluating the relative timing of different types of sedimentary indicators of tectonism in alluvial foreland basin settings. We take the first occurrence of a detrital grain from a newly exposed source‐area lithology to provide the best indicator of the onset of tectonic uplift in the source area. Source‐area unroofing may lag behind initial uplift because of the type, thickness and structure of rocks in the uplifted mountain block, drainage patterns and climate. However, once exposed, advective transport disperses grains quickly throughout fluvial systems. Because of increased subsidence rate from thrust belt loading, an increase in sedimentation rate begins coincident with tectonic load emplacement within the flexural half‐width of the basin. However, farther out into the basin increased sedimentation rates lag behind the composition signal because of time lags associated with propagation of the thrust load and attendant sediment loads into the basin. The progradation of syntectonic gravel lags behind all of these signals as a direct function of the relative proportion of gravel fraction within transported sediment and rates and geometry of subsidence, which selectively traps the coarsest grain‐size fractions in the most proximal parts of the basin. We demonstrate this signal attenuation in the syntectonic Horta–Gandesa alluvial system (late Eocene–Oligocene), exposed along the southeast margin of the Ebro Basin, Spain. The results demonstrate that: (1) the time spans between the compositional signal and the progradation of the gravel front can be geologically significant, on the order of more than a million years within as little as 20 km of the thrust front; and (2) time lags between the signals increase with distance away from the deformation front. No lag time was observed between the first appearance of a new clast composition and the arrival of gravel front when the thrust front was within a few tens of metres from the depositional site. In contrast, the time lag was 0.5–1 Myr when the thrust front was about 5–6 km away and it increased to >1 Myr when the deformation front was about 8 km away. At the most extreme position, when the thrust front was 15–20 km away, the gravel front never reached the study area.  相似文献   

10.
The tectonic evolution of the Tian Shan, as for most ranges in continental Asia is dominated by north‐south compression since the Cenozoic India‐Asia collision. However, precollision governing tectonic processes remain enigmatic. An excellent record is provided by thick Palaeozoic – Cenozoic lacustrine to fluvial depositional sequences that are well preserved in the southern margin of the Junggar Basin and exposed along a foreland basin associated to the Late Cenozoic rejuvenation of the Tian Shan ranges. U/Pb (LA‐ICP‐MS) dating of detrital zircons from 14 sandstone samples from a continuous series ranging in age from latest Palaeozoic to Quaternary is used to investigate changes in sediment provenance through time and to correlate them with major tectonic phases in the range. Samples were systematically collected along two nearby sections in the foreland basin. The results show that the detrital zircons are mostly magmatic in origin, with some minor input from metamorphic zircons. The U‐Pb detrital zircon ages range widely from 127 to 2856 Ma and can be divided into four main groups: 127–197 (sub‐peak at 159 Ma), 250–379 (sub‐peak at 318 Ma), 381–538 (sub‐peak at 406 Ma) and 543–2856 Ma (sub‐peak at 912 Ma). These groups indicate that the zircons were largely derived from the Tian Shan area to the south since a Late Carboniferous basin initiation. The provenance and basin‐range pattern evolution of the southern margin of Junggar Basin can be generally divided into four stages: (1) Late Carboniferous – Early Triassic basin evolution in a half‐graben or post‐orogenic extensional context; (2) From Middle Triassic to Upper Jurassic times, the southern Junggar became a passively subsiding basin until (3) being inverted during Lower Cretaceous – Palaeogene; (4) During the Neogene, a piedmont developed along the northern margin of the North Tian Shan block and Junggar Basin became a true foreland basin.  相似文献   

11.
Constraining the thermal and denudational evolution of continental margins from extensional episodes to early orogenic stages is critical in the objective to better understand the sediment routing during the growth of orogenic topography. Here, we report 160 detrital zircon U/Pb ages and 73 (U‐Th)/He ages from Albian, Upper Cretaceous and Eocene sandstones from the south‐central Pyrenees. All samples show dominant zircon U/Pb age peaks at 310–320 Ma, indicating a primary contribution from Variscan granites of the central Pyrenean Axial Zone. A secondary population at 450–600 Ma documents zircon grains sourced from the eastern Pyrenees. Zircon (U‐Th)/He ages recovered from older samples document, a Triassic age peak at ca. 241 Ma, corresponding to denudation coeval with the initiation of Atlantic rifting. An Early Cretaceous cooling event at ca. 133 Ma appears consistent with rift‐related exhumation and thermal overprint on the Iberian margin. The (U‐Th)/He age peaks from ca. 80 Ma to ca. 68 Ma with decreasing depositional ages are interpreted to reflect the southward‐migrating thrust‐related exhumation on the pro‐wedge side of the Pyrenean orogen. The increase in lag times, from ca. 15 Ma in the Tremp Formation (ca. 65 Ma) to 28 Ma in the Escanilla Formation (ca. 40 Ma), suggests decreasing exhumation rates from 0.4 km Myr–1 to 0.2 km Myr–1. The apparent inconsistency with convergence rates is used to infer that rocks cooled at 68 Ma may have resided in the crust before final exhumation to the surface. Finally, the cooling event observed at 68 Ma provides support to the inferred acceleration of convergence, shortening and exhumation during Late Cretaceous times.  相似文献   

12.
The North Sakhalin Basin in the western Sea of Okhotsk has been the main site of sedimentation from the Amur River since the Early Miocene. In this article, we present regional seismic reflection data and a Neogene–Recent sediment budget to constrain the evolution of the basin and its sedimentary fill, and consider the implications for sediment flux from the Amur River, in particular testing models of continental‐scale Neogene drainage capture. The Amur‐derived basin‐fill history can be divided into five distinct stages: the first Amur‐derived sediments (>21–16.5 Ma) were deposited during a period of transtension along the Sakhalin‐Hokkaido Shear Zone, with moderately high sediment flux to the basin (71 Mt year?1). The second stage sequence (16.5–10.4 Ma) was deposited following the cessation of transtension, and was characterised by a significant reduction in sediment flux (24 Mt year?1) and widespread retrogradation of deltaic sediments. The third (10.4–5.3 Ma) and fourth (5.3–2.5 Ma) stages were characterised by progradation of deltaic sediments and an associated increase in sediment flux (48–60 Mt year?1) to the basin. Significant uplift associated with regional transpression started during this time in southeastern Sakhalin, but the north‐eastward propagating strain did not reach the NE shelf of Sakhalin until the Pleistocene (<2.5 Ma). This uplift event, still ongoing today, resulted in recycling of older deltaic sediments from the island of Sakhalin, and contributed to a substantially increased total sediment flux to the adjacent basinal areas (165 Mt year?1). Adjusted rates to discount these local erosional products (117 Mt year?1) imply an Amur catchment‐wide increase in denudation rates during the Late Pliocene–Pleistocene; however, this was likely a result of global climatic and eustatic effects, combined with tectonic processes within the Amur catchment and possibly a smaller drainage capture event by the Sungari tributary, rather than continental‐scale drainage capture involving the entire upper Amur catchment.  相似文献   

13.
The Junggar Basin in NW China contains lacustrine hydrocarbon source rocks which are among the highest quality of hydrocarbon potential in the world. Oil reservoirs in the basin are very substantial: target reservoirs span Carboniferous to Tertiary strata and include Permo-Triassic lacustrine and fluvial sandstones. The Junggar Basin was a foreland basin during the late Permian to Cenozoic, possibly with strike-slip tectonics at the southern margin during Mesozoic time. The Cangfanggou Group, as one of the major reservoirs, is well-exposed in the eastern part of the southern Junggar Basin. A measured outcrop section and a number of borehole logs coupled with resistivity logs were used to attempt sequence stratigraphic analysis. Detailed sedimentological studies on the outcrops and borehole cores have demonstrated that the Cangfanggou Group is characterized by alternating lacustrine and fluvial deposits. Four depositional sequences have been recognized. For each sequence, the basal boundary is marked by erosional truncation of fluvial channel conglomeratic sandstones in sharp contact with underlying lacustrine or floodplain mudstones. The top of each lowstand systems tract is normally overlain by the transition to lacustrine or maximum flooding surface. The transgressive systems tract is normally not identifiable at the basin margin, but was developed in the basinward area and characterized by interbedded fining-upward distal fluvial and shallow lacustrine deposits. The highstand systems tract at the basin margin is characterized by very thick floodplain mudstones or shallow lacustrine deposits, and by typical coarsening-upward parasequences of shallow lacustrine deposits in more basinward areas. Sediment input to the basin was controlled by tectonics and climate. Depositional sequences were probably controlled by fluctuating change of lake level: this was in turn controlled by climate (runoff), modified by tectonics in specific areas.The sandstones studied are exclusively volcanic litharenites. Diagenetic studies suggest that the calcite cementation, pore-filling clay minerals and zeolites occluded substantial porosity in the sandstones examined because they are compositionally immature. However, notable secondary porosity in varying proportions is present in the sandstones of the Cangfanggou Group, resulting from the dissolution of unstable detrital grains. The lowstand fluvial/distal fluvial sandstones recorded the highest average porosity and highest permeability, in which some primary porosity may remain because early formed clay coatings inhibited further compaction. The combination of residual primary porosity and significant amount of secondary porosity in the sandstones of the Cangfanggou Group may constitute moderate to good reservoirs. In contrast, the lacustrine fine-grained sandstones is characterized by clay authigenesis and zeolitization, in which the porosity was obliterated by the zeolites and extensive illitization; the lowstand fluvial channel sandstones in the basin margin areas are characterized by extensive calcite cementation which greatly reduced the porosity and permeability.This is the fifth paper in a series of papers published in this issue on Climatic and Tectonic Rhythms in Lake Deposits.  相似文献   

14.
Abstract The Amadeus Basin, a broad intracratonic depression (800 times 300 km) in central Australia, contains a complex Late Proterozoic to mid-Palaeozoic depositional succession which locally reaches 14 km in thickness. The application of sequence stratigraphy to this succession has provided an effective framework in which to evaluate its evolution. Analysis of major depositional sequences shows that the Amadeus Basin evolved in three stages. Stage 1 began at about 900 Myr with extensional thinning of the crust and formation of half-grabens. Thermal recovery following extension was well advanced when a second less intense crustal extension (stage 2) occurred towards the end of the Late Proterozoic. Stage 2 thermal recovery was followed by a major compressional event (stage 3) in which major southward-directed thrust sheets caused progressive downward flexing of the northern margin of the basin, and sediment was shed from the thrust sheets into the downwarps forming a foreland basin. This event shortened the basin by 50–100 km and effectively concluded sedimentation. The two stages of crustal extension and thermal recovery produced large-scale apparent sea-level effects upon which eustatic sea-level cycles are superimposed. Since the style of sedimentation and major sequence boundaries were controlled to a large degree by basin dynamics, depositional patterns within the Amadeus and associated basin are, to a large degree, predictable. This suggests that an understanding of major variables associated with basin dynamics and their relationship to depositional sequences may allow the development of generalized depositional models on a basinal scale. The Amadeus Basin is only one of a number of broad, shallow, intracratonic depressions that appeared on the Australian craton during the Late Proterozoic. The development of these basins almost certainly relates to the breakup of a Proterozoic supercontinent and in large part, basin dynamics appears to be tied to this global tectonic event. Onlap and apparent sea-level curves derived from the sequence analysis appear to be composite curves resulting from both basin dynamics and eustatic sea-level effects. It thus appears likely that sequence stratigraphy could be used as a basis for inter-regional correlation; a possibility that has considerable significance in Archaean and Proterozoic basins.  相似文献   

15.
Sediment provenance studies have proven to be an effective method to extract the sediment provenance and tectonic process information recorded by detrital minerals. In this contribution, we conducted detrital monazite and zircon U‐Pb geochronology and detrital Cr‐spinel major element chemistry analyses on samples from the Qaidam Basin to reconstruct the spatial and temporal evolution of the Altyn Tagh Range and the Qimen Tagh Range in the northern Tibetan Plateau. Based on the significant variation in [Th/U]N, [Gd/Lu]N and [Eu/Eu*]N and the U‐Pb ages of the monazite and zircon, the South Altyn Tagh subduction‐collision belt and the North Qimen Tagh Range were, respectively, the main provenances of the Ganchaigou section and the Dongchaishan‐Weitai section in the Qaidam Basin in the Cenozoic. Paleozoic peak metamorphism, retrograde granulite‐facies metamorphism and amphibolite‐facies metamorphism in the South Altyn Tagh subduction‐collision belt were well recorded by the detrital monazite. In comparison, the detrital zircon is a better indicator of igneous events than detrital monazite. Synthesizing the detrital monazite, zircon and Cr‐spinel data, we concluded that the South Altyn Tagh Ocean and Qimen Tagh Ocean existed in the early Paleozoic and that the Altyn Tagh terrane and Qimen Tagh terrane experienced different Paleozoic tectonothermal histories. The collision between the Qaidam terrane and the Azhong terrane occurred at ca. 500 Ma. The Middle Ordovician was the key period of transformation from the collision‐induced compressional environment to an extensional environment in the area of the South Altyn Tagh Range. In the early Paleozoic, the Qimen Tagh area was characterized by the subduction of oceanic crust.  相似文献   

16.
Quaternary catchments in the south of the Sorbas Basin, SE Spain have been affected by two regionally significant river captures. The river captures were triggered by changes in regional gradients associated with sustained Quaternary uplift in the region of 160 m Ma−1. The first capture occurred in the early Pleistocene and re-routed 15% of the original Sorbas Basin drainage into the Carboneras Basin to the south. The second occurred in the late Pleistocene and re-routed 73% of the original Sorbas Basin drainage to the east. This latter capture had dramatic consequences for base-level in the Sorbas Basin master drainage. Local base-level was lowered by 90 m at the capture site, 50 m at 7 km upstream and 25 m at 13 km upstream of the site. The base-level change instigated a complex re-organisation of the drainage networks in systems tributary to the master drainage over the ensuing period (some 100 ka). After the capture, drainage systems closer to the capture site experienced a tenfold increase in incision rates over most of their network. Those located some 13 km upstream of the capture site experienced a fivefold increase in incision, although in this instance, the changes do not appear to have propagated to the headwater regions of the drainage nets. The sensitivity of individual catchments was largely governed by geological controls (structure and lithology). The detailed network evolution in the most sensitive areas can be traced by reconstructing former drainage pathways using abandoned drainage cols and the alignment and degree of incision of the drainage networks. Three main stages of evolution can be identified which record the progressive spread of base-level changes from the master drainage. These are Stage 1 (pre-capture): original south-to-north consequent drainage; Stage 2 (early stage, post capture): aggressive subsequent southwest-to-northeast and east–west drainage developed along structural lineaments first in the east of the area (Stage 2a), and later in the west of the area (Stage 2b); and Stage 3 (late stage, post capture): obsequent drainage developing on the topography of the Stage 2 drainage. All stages of the network evolution are associated with drainage re-routing as a function of river capture at a variety of scales. The results highlight the complex response of the fluvial system, and the very different geomorphological histories of adjacent catchments, emphasising the need for regional approaches for examining long-term changes in fluvial systems.  相似文献   

17.
The uplift and associated exhumation of the Tibetan Plateau has been widely considered a key control of Cenozoic global cooling. The south-central parts of this plateau experienced rapid exhumation during the Cretaceous–Palaeocene periods. When and how the northern part was exhumed, however, remains controversial. The Hoh Xil Basin (HXB) is the largest late Cretaceous–Cenozoic sedimentary basin in the northern part, and it preserves the archives of the exhumation history. We present detrital apatite and zircon (U-Th)/He data from late Cretaceous–Cenozoic sedimentary rocks of the western and eastern HXB. These data, combined with regional geological constraints and interpreted with inverse and forward model of sediment deposition and burial reheating, suggest that the occurrence of ca. 4–2.7 km and ca. 4–2.3 km of vertical exhumation initiated at ca. 30–25 Ma and 40–35 Ma in the eastern and western HXB respectively. The initial differential exhumation of the eastern HXB and the western HXB might be controlled by the oblique subduction of the Qaidam block beneath the HXB. The initial exhumation timing in the northern Tibetan Plateau is younger than that in the south-central parts. This reveals an episodic exhumation of the Tibetan Plateau compared to models of synchronous Miocene exhumation of the entire plateau and the early Eocene exhumation of the northern Tibetan Plateau shortly after the India–Asia collision. One possible mechanism to account for outward growth is crustal shortening. A simple model of uplift and exhumation would predict a maximum of 0.8 km of surface uplift after upper crustal shortening during 30–27 Ma, which is insufficient to explain the high elevations currently observed. One way to increase elevation without changing exhumation rates and to decouple uplift from upper crustal shortening is through the combined effects of continental subduction, mantle lithosphere removal and magmatic inflation.  相似文献   

18.
Abstract We present here the initial results of a high-resolution (sparker) reflection seismic survey in Northern Lake Tanganyika, East African Rift system. We have combined these results with data from earlier multichannel reflection seismic and 5-kHz echosounding surveys. The combination of the three complementary seismic investigation methods has allowed us to propose a new scenario for the late Aliocene to Recent sedimentary evolution of the North Tanganyika Basin. Seismic sequences and regional tectonic information permit us to deduce the palaeotopography at the end of each stratigraphic sequence. The basin history comprises six phases interpreted to be responses to variations in regional tectonism and/or climate. Using the reflection seismic-radiocarbon method (RSRM), the minimum ages for the start of each phase (above each sequence boundary) are estimated to be: ?7.4 Ma, ? 1.1 Ma, ?393–363 ka, ?295–262 ka, ? 193–169 ka, ?40–35 ka. Corresponding lowstand lake elevations below present lake level for the last five phases are estimated to have been: ?650–700 m, ?350 m, ?350 m, ?250 m and ? 160 m, respectively. The latest phase from ?40–35 ka until the present can be subdivided into three subphases separated by two lowstand periods, dated at ?23 ka and ? 18 ka. From the late Miocene until the mid Pleistocene, large-scale patterns of sedimentation within the basin were primarily controlled by tectonism. In contrast, from the mid Pleistocene to the present, sedimentation in Lake Tanganyika seems to have responded dramatically to climatic changes as suggested by repeated patterns of lake level fluctuations. During this period, the basin infill history is characterized by the recurrent association of three types of deposits: ‘basin fill’ accumulations; lens-shaped ‘deep lacustrine fans’; and ‘sheet drape’ deposits. The successive low-lake-level fluctuations decreased in intensity with time as a consequence of rapid sedimentary filling under conditions of declining tectonic subsidence. The climate signal has thus been more pronounced in recent sedimentary phases as tectonic effects have waned.  相似文献   

19.
20.
Constraining the burial history of a sedimentary basin is crucial for accurate prediction of hydrocarbon generation and migration. Although the Ghadames Basin is a prolific hydrocarbon province, with recoverable oil discovered to date in excess of 3.5 billion bbl, exploration on the eastern margin is still limited and the prospectivity of the area depends on the identification of effective source rocks and the timing of hydrocarbon generation. Sonic velocity, apatite fission track (FT) and vitrinite reflectance analysis offer three complementary methods to determine burial history and provide independent analytical techniques to evaluate the timing and amount of exhumation. The results indicate that two phases of tectonic activity had the biggest influence on basin evolution: the Hercynian (Late Carboniferous–Triassic) and Alpine (Late Mesozoic/Cenozoic) tectonic events. Exhumation during the Hercynian tectonic event increases from the SE, where an almost complete Palaeozoic section is preserved, towards the NW. This study quantifies the significant regional Alpine exhumation of the southern and eastern margins of the basin, with important implications for the timing of hydrocarbon maturation and expulsion, particularly for the Silurian source rock interval. Incorporating elevated Alpine exhumation values into burial history models for wells in the eastern (Libyan) part of the basin allows calibration with available maturity (Roeq) data using moderate values of Hercynian erosion. The result is preservation of the generation potential of Silurian (Tanezzuft) source rocks until maximum burial during Mesozoic/Cenozoic time, which improves the chance for preservation of hydrocarbon accumulations following entrapment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号