首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The syn‐rift/post‐rift transition of the late Ediacaran‐mid Cambrian Atlas rift is characterized by the interplay of several processes, such as a widespread episode of fracturing and tilting, associated with encasement of fault‐controlled vein metallic ore deposits of economic importance, and carbonate production and phosphogenesis (Taguedit Bed, Tabia Member) bordering rift‐flank uplifts. A correlatable unconformity marks the end of these processes and the beginning of a thermal subsidence‐dominated regime with development of a more stable, carbonate, peritidal‐dominated platform (Tifnout Member). Late Ediacaran microbial carbonate production and phosphogenesis extended in discontinuous belts around the periphery of uplifted rift shoulders and flanks. Karst development is interpreted to have formed along synsedimentary faults and fractures during abrupt tectonic uplift associated with emplacement of polymetallic hydrothermal dikes (rich in Cu, Fe and subsidiary Pb, Zn). Isotopic analysis indicates that speleothem precipitation in karstic palaeocaves displays significantly lighter δ13C and δ18O values as compared to the host dolomite, implying calcite precipitation by terrestrial fluids rich in decomposing organic matter and/or microbial activity in the cave system.  相似文献   

2.
Platform carbonates diagenesis in salt basins could be complex due to potential alterations of fluids related and non-related to diapirism. This paper presents the diagenetic history of the Hettangian to Pliensbachian platform carbonates from the Tazoult salt wall area (central High Atlas, Morocco). Low structural relief and outcrop conditions allowed to define the entire diagenetic evolution occurred in the High Atlas diapiric basins since early stages of the diapiric activity up to their tectonic inversion. Precipitation of dolomite and calcite from both warmed marine-derived and meteoric fluids characterised diagenetic stages during Pliensbachian, when the carbonate platforms were exposed and karstified. Burial diagenesis occurred from Toarcian to Middle Jurassic, due to changes of salt-induced dynamic related to increase in siliciclastic input, fast diapir rise and rapid burial of Pliensbachian platforms. During this stage, the diapir acted as a physical barrier for fluid circulation between the core and the flanking sediments. In the carbonates and breccias flanking the structures, dolomite and calcite precipitated from basinal brines, whereas carbonate slivers located in the core of the structure, were affected by the circulation of Mn-rich fluids. The final diagenetic event is characterised by the income of meteoric fluids into the system during uplift caused by Alpine orogeny. These results highlight the relevant influence of diapirism on the diagenetic modifications in salt-related basins in terms of diagenetic events and involved fluids.  相似文献   

3.
Pervasive fracture networks are common in many reservoir‐scale carbonate bodies even in the absence of large deformation and exert a major impact on their mechanical and flow behaviour. The Upper Cretaceous Jandaíra Formation is a few hundred meters thick succession of shallow water carbonates deposited during the early post‐rift stage of the Potiguar rift (NE Brazil). The Jandaíra Formation in the present onshore domain experienced <1.5 km thermal subsidence and, following Tertiary exhumation, forms outcrops over an area of >1000 km2. The carbonates have a gentle, <5?, dip to the NE and are affected by few regional, low displacement faults or folds. Despite their simple tectonic history, carbonates display ubiquitous open fractures, sub‐vertical veins, and sub‐vertical as well as sub‐horizontal stylolites. Combining structural analysis, drone imaging, isotope studies and mathematical modelling, we reconstruct the fracturing history of the Jandaíra Formation during and following subsidence and analyse the impact fractures had on coeval fluid flow. We find that Jandaíra carbonates, fully cemented after early diagenesis, experienced negligible deformation during the first few hundreds of meters of subsidence but were pervasively fractured when they reached depths >400–500 m. Deformation was accommodated by a dense network of sub‐vertical mode I and hybrid fractures associated with sub‐vertical stylolites developed in a stress field characterised by a sub‐horizontal σ1 and sub‐vertical σ2. The development of a network of hybrid fractures, rarely reported in the literature, activated the circulation of waters charged in the mountainous region, flowing along the porous Açu sandstone underlying the Jandaíra carbonates and rising to the surface through the fractured carbonates. With persisting subsidence, carbonates reached depths of 800–900 m entering a depth interval characterised by a sub‐vertical σ1. At this stage, sub‐horizontal stylolites developed liberating calcite which sealed the sub‐vertical open fractures transforming them in veins and preventing further flow. During Tertiary exhumation, several of the pre‐existing veins and stylolites opened and became longer, and new fractures were created typically with the same directions of the older features. The simplicity of our model suggests that most rocks in passive margin settings might have followed a similar evolution and thus display similar structures.  相似文献   

4.
Studies of salt‐influenced rift basins have focused on individual or basin‐scale fault system and/or salt‐related structure. In contrast, the large‐scale rift structure, namely rift segments and rift accommodation zones and the role of pre‐rift tectonics in controlling structural style and syn‐rift basin evolution have received less attention. The Norwegian Central Graben, comprises a complex network of sub‐salt normal faults and pre‐rift salt‐related structures that together influenced the structural style and evolution of the Late Jurassic rift. Beneath the halite‐rich, Permian Zechstein Supergroup, the rift can be divided into two major rift segments, each comprising rift margin and rift axis domains, separated by a rift‐wide accommodation zone – the Steinbit Accommodation Zone. Sub‐salt normal faults in the rift segments are generally larger, in terms of fault throw, length and spacing, than those in the accommodation zone. The pre‐rift structure varies laterally from sheet‐like units, with limited salt tectonics, through domains characterised by isolated salt diapirs, to a network of elongate salt walls with intervening minibasins. Analysis of the interactions between the sub‐salt normal fault network and the pre‐rift salt‐related structures reveals six types of syn‐rift depocentres. Increasing the throw and spacing of sub‐salt normal faults from rift segment to rift accommodation zone generally leads to simpler half‐graben geometries and an increase in the size and thickness of syn‐rift depocentres. In contrast, more complex pre‐rift salt tectonics increases the mechanical heterogeneity of the pre‐rift, leading to increased complexity of structural style. Along the rift margin, syn‐rift depocentres occur as interpods above salt walls and are generally unrelated to the relatively minor sub‐salt normal faults in this structural domain. Along the rift axis, deformation associated with large sub‐salt normal faults created coupled and decoupled supra‐salt faults. Tilting of the hanging wall associated with growth of the large normal faults along the rift axis also promoted a thin‐skinned, gravity‐driven deformation leading to a range of extensional and compressional structures affecting the syn‐rift interval. The Steinbit Accommodation Zone contains rift‐related structural styles that encompass elements seen along both the rift margin and axis. The wide variability in structural style and evolution of syn‐rift depocentres recognised in this study has implications for the geomorphological evolution of rifts, sediment routing systems and stratigraphic evolution in rifts that contain pre‐rift salt units.  相似文献   

5.
The Qiongdongnan Basin is one of the largest Cenozoic rifted basins on the northern passive margin of the South China Sea. It is well known that since the Late Miocene, approximately 10 Ma after the end of the syn‐rift phase, this basin has exhibited rapid thermal subsidence. However, detailed analysis reveals a two‐stage anomalous subsidence feature of the syn‐rift subsidence deficit and the well‐known rapid post‐rift subsidence after 10.5 Ma. Heat‐flow data show that heat flow in the central depression zone is 70–105 mW m?2, considerably higher than the heat flow (<70 mW m?2) on the northern shelf. In particular, there is a NE‐trending high heat‐flow zone of >85 mW m?2 in the eastern basin. We used a numerical model of coupled geothermal processes, lithosphere thinning and depositional processes to analyse the origin of the anomalous subsidence pattern. Numerical analysis of different cases shows that the stretching factor βs based on syn‐rift sequences is less than the observed crustal stretching factor βc, and if the lithosphere is thinned with βc during the syn‐rift phase (before 21 Ma), the present basement depth can be predicted fairly accurately. Further analysis does not support crustal thinning after 21 Ma, which indicates that the syn‐rift subsidence is in deficit compared with the predicted subsidence with the crustal stretching factor βc. The observed high heat flow in the central depression zone is caused by the heating of magmatic injection equivalently at approximately 3–5 Ma, which affected the eastern basin more than the western basin, and the Neogene magmatism might be fed by the deep thermal anomaly. Our results suggest that the causes of the syn‐rift subsidence deficit and rapid post‐rift subsidence might be related. The syn‐rift subsidence deficit might be caused by the dynamic support of the influx of warmer asthenosphere material and a small‐scale thermal upwelling beneath the study area, which might have been persisting for about 10 Ma during the early post‐rift phase, and the post‐rift rapid subsidence might be the result of losing the dynamic support with the decaying or moving away of the deep thermal source, and the rapid cooling of the asthenosphere. We concluded that the excess post‐rift subsidence occurs to compensate for the syn‐rift subsidence deficit, and the deep thermal anomaly might have affected the eastern Qiongdongnan Basin since the Late Oligocene.  相似文献   

6.
7.
The Helmstedt‐Staßfurt salt wall is 70 km long, 6–8 km wide and one of the most important diapiric structures in northern Germany, based on the economically significant lignite‐bearing rim synclines. The analysed Schöningen rim syncline, located on the southwestern side of the Helmstedt‐Staßfurt structure, is 8 km long and 3 km wide. The basin‐fill is up to 366 m thick and characterized by 13 major lignite seams with thicknesses between 0.1 and 30 m. The key objectives of this article were to expand on the classical cross‐section based rim syncline analysis by the use of 3D models and basin simulations. Cross‐sections perpendicular to the basin axis indicate that the basin‐fill has a pronounced lenticular shape. This shape varies from more symmetric in the NW to clearly asymmetric in the SE. Isopach maps imply a two‐fold depocentre evolution. The depocentre migrated over time towards the salt wall and also showed some distinct shifts parallel to the salt wall. The basin modelling part of the study was carried out with the software PetroMod®, which focused on the burial history of the rim syncline. Modelling results also show the progressive migration of the rim syncline depocentre towards the salt wall. The present‐day asymmetry of the basin‐fill was already developed in the early phases of rim syncline evolution. The extracted geohistory curve shows initial rapid subsidence between 57 and 50 Ma and more moderate subsidence from 50 to 34 Ma. This pattern is interpreted to reflect salt evacuation from the source layer into the salt wall. The initial salt‐withdrawal rate was rapid, but later decreased probably due to depletion of the source layer.  相似文献   

8.
The Corinth rift (Greece) is one of the world's most active rifts. The early Plio‐Pleistocene rift is preserved in the northern Peloponnese peninsula, south of the active Corinth rift. Although chronostratigraphic resolution is limited, new structural, stratigraphic and sedimentological data for an area >400 km2 record early rift evolution in three phases separated by distinct episodes of extension rate acceleration and northward fault migration associated with major erosion. Minimum total N–S extension is estimated at 6.4–7.7 km. The earliest asymmetrical, broad rift accommodated slow extension (0.6–1 mm a?1) over >3 Myrs and closed to the west. North‐dipping faults with throws of 1000–2200 m defined narrow blocks (4–7 km) with little footwall relief. A N‐NE flowing antecedent river system infilled significant inherited relief (Lower group). In the earliest Pleistocene, significant fluvial incision coincided with a 15 km northward rift margin migration. Extension rates increased to 2–2.5 mm a?1. The antecedent rivers then built giant Gilbert‐type fan deltas (Middle group) north into a deepening lacustrine/marine basin. N‐dipping, basin margin faults accommodated throws <1500 m. Delta architecture records initiation, growth and death of this fault system over ca. 800 ka. In the Middle Pleistocene, the rift margin again migrated 5 km north. Extension rate increased to 3.4–4.8 mm a?1. This transition may correspond to an unconformity in offshore lithostratigraphy. Middle group deltas were uplifted and incised as new hangingwall deltas built into the Gulf (Upper group). A final increase to present‐day extension rates (11–16 mm a?1) probably occurred in the Holocene. Fault and fault block dimensions did not change significantly with time suggesting control by crustal rheological layering. Extension rate acceleration may be due to strain softening or to regional tectonic factors.  相似文献   

9.
10.
In this study, we integrate 3D seismic reflection, wireline log, biostratigraphic and core data from the Egersund Basin, Norwegian North Sea to determine the impact of syn‐depositional salt movement and associated growth faulting on the sedimentology and stratigraphic architecture of the Middle‐to‐Upper Jurassic, net‐transgressive, syn‐rift succession. Borehole data indicate that Middle‐to‐Upper Jurassic strata consist of low‐energy, wave‐dominated offshore and shoreface deposits and coal‐bearing coastal‐plain deposits. These deposits are arranged in four parasequences that are aggradationally to retrogradationally stacked to form a net‐transgressive succession that is up to 150‐m thick, at least 20 km in depositional strike (SW‐NE) extent, and >70 km in depositional dip (NW‐SE) extent. In this rift‐margin location, changes in thickness but not facies are noted across active salt structures. Abrupt facies changes, from shoreface sandstones to offshore mudstones, only occur across large displacement, basement‐involved normal faults. Comparisons to other tectonically active salt‐influenced basins suggest that facies changes across syn‐depositional salt structures are observed only where expansion indices are >2. Subsidence between salt walls resulted in local preservation of coastal‐plain deposits that cap shoreface parasequences, which were locally removed by transgressive erosion in adjacent areas of lower subsidence. The depositional dip that characterizes the Egersund Basin is unusual and likely resulted from its marginal location within the evolving North Sea rift and an extra‐basinal sediment supply from the Norwegian mainland.  相似文献   

11.
Loading of subsurface salt during accumulation of fluvial strata can result in halokinesis and the growth of salt pillows, walls and diapirs. Such movement may eventually result in the formation of salt‐walled mini‐basins, whose style of architectural infill may be used to infer both the relative rates of salt‐wall growth and sedimentation and the nature of the fluvial‐system response to salt movement. The Salt Anticline Region of the Paradox Basin of SE Utah comprises a series of elongate salt‐walled mini‐basins, arranged in a NW‐trending array. The bulk of salt movement occurred during deposition of the Permian Cutler Group, a wedge of predominantly quartzo‐feldspathic clastic strata comprising sediment derived from the Uncompahgre Uplift to the NE. The sedimentary architecture of selected mini‐basin fills has been determined at high resolution through outcrop study. Mini‐basin centres are characterized by multi‐storey fluvial channel elements arranged into stacked channel complexes, with only limited preservation of overbank elements. At mini‐basin margins, thick successions of fluvial overbank and sheet‐like elements dominate in rim‐syncline depocentres adjacent to salt walls; many such accumulations are unconformably overlain by single‐storey fluvial channel elements that accumulated during episodes of salt‐wall breaching. The absence of gypsum clasts suggests that sediment influx was high, preventing syn‐sedimentary surface exposure of salt. Instead, fluvial breaching of salt‐generated topography reworked previously deposited sediments of the Cutler Group atop growing salt walls. Palaeocurrent data indicate that fluvial palaeoflow to the SW early in the history of basin infill was subsequently diverted to the W and ultimately to the NW as the salt walls grew to form topographic barriers. Late‐stage retreat of the Cutler fluvial system coincided with construction and accumulation of an aeolian system, recording a period of heightened climatic aridity. Aeolian sediments are preserved in the lees of some salt walls, demonstrating that halokinesis played a complex role in the differential trapping of sediment.  相似文献   

12.
13.
Because salt can decouple sub‐ and supra‐salt deformation, the structural style and evolution of salt‐influenced rifts differs from those developed in megoscopically homogenous and brittle crust. Our understanding of the structural style and evolution of salt‐influenced rifts comes from scaled physical models, or subsurface‐based studies that have utilised moderate‐quality 2D seismic reflection data. Relatively few studies have used high‐quality 3D seismic reflection data, constrained by borehole data, to explicitly focus on the role that along‐strike displacement variations on sub‐salt fault systems, or changes in salt composition and thickness, play in controlling the four‐dimensional evolution of supra‐salt structural styles. In this study, we use 3D seismic reflection and borehole data from the Sele High Fault System (SHFS), offshore Norway to determine how rift‐related relief controlled the thickness and lithology of an Upper Permian salt‐bearing layer (Zechstein Supergroup), and how the associated variations in the mechanical properties of this unit influenced the degree of coupling between sub‐ and supra‐salt deformation during subsequent extension. Seismic and borehole data indicate that the Zechstein Supergroup is thin, carbonate‐dominated and immobile at the footwall apex, but thick, halite‐dominated and relatively mobile in high accommodation areas, such as near the lateral fault tips and in the immediate hangingwall of the fault system. We infer that these variations reflect bathymetric changes related to either syn‐depositional (i.e. Late Permian) growth of the SHFS or underfilled, fault scarp‐related relief inherited from a preceding (i.e. Early Permian) rift phase. After a period of tectonic quiescence in the Early Triassic, regional extension during the Late Triassic triggered halokinesis and growth of a fault‐parallel salt wall, which was followed by mild extension in the Jurassic and forced folding of Triassic overburden above the fault systems upper tip. During the Early Cretaceous, basement‐involved extension resulted in noncoaxial tilting of the footwall, and the development of an supra‐salt normal fault array, which was restricted to footwall areas underlain by relatively thick mobile salt; in contrast, at the footwall apex, no deformation occurred because salt was thin and immobile. The results of our study demonstrate close coupling between tectonics, salt deposition and the style of overburden deformation for >180 Myr of the rift history. Furthermore, we show that rift basin tectono‐stratigraphic models based on relatively megascopically homogeneous and brittle crust do not appropriately describe the range of structural styles that occur in salt‐influenced rifts.  相似文献   

14.
《Basin Research》2018,30(3):522-543
We present a source‐to‐sink analysis to explain sediment supply variations and depositional patterns over the Holocene within an active rift setting. We integrate a range of modelling approaches and data types with field observations from the Sperchios rift basin, Central Greece that allow us to analyse and quantify (1) the size and characteristics of sediment source areas, (2) the dynamics of the sediment routing system from upstream fluvial processes to downstream deposition at the coastline, and (3) the depositional architecture and volumes of the Holocene basin fill. We demonstrate that the Sperchios rift comprises a ‘closed’ system over the Holocene and that erosional and depositional volumes are thus balanced. Furthermore, we evaluate key controls in the development of this source‐to‐sink system, including the role of pre‐existing topography, bedrock erodibility and lateral variations in the rate of tectonic uplift/subsidence. We show that tectonic subsidence alone can explain the observed grain size fining along the rift axis resulting in the downstream transition from a braided channel to an extensive meander belt (>15 km long) that feeds the fine‐grained Sperchios delta. Additionally, we quantify the ratios of sediment storage to bypass for the two main footwall‐sourced alluvial fan systems and relate the fan characteristics to the pattern and rates of fault slip. Finally, we show that ≥40% of the sediment that builds the Sperchios delta is supplied by ≤22% of the entire source area and that this can be primarily attributed to a longer‐term (~106 years) transient landscape response to fault segment linkage. Our multidisciplinary approach allows us to quantify the relative importance of multiple factors that control a complex source‐to‐sink system and thus improve our understanding of landscape evolution and stratigraphic development in active extensional tectonic settings.  相似文献   

15.
The East African Rift system has long been considered the best modern example of the initial stages of continental rifting. The Malawi Rift is characteristic of the western branch of the East African Rift system, composed of half-grabens of opposing asymmetry along its length. There are striking similarities between basins within the Malawi Rift, and others along the western branch. Each exhibits similar bathymetry, border-fault length, rift zone width and fault segment length. The North Basin of the Malawi Rift differs from others in the rift only in its orientation: trending NW–SE as opposed to N–S. Although there is general agreement as to the geometry of the Malawi Rift; debate as to the amount of strike–slip vs. dip–slip deformation and the influence of underlying Pan-African foliation remains. This study presents new data from a closely spaced shallow [2 s two-way travel time (TWT)] seismic reflection data set integrated with basin-scale deeper (6 s TWT) seismic reflection data that document the structural evolution of the border and intra-basin faults. These data reveal that the different trend of the North Basin, most likely to have been influenced by the underlying Pan-African foliation, has played an extremely important role in the structural style of basin evolution. The border-fault and intra-basin structures nucleated during extension that was initially orthogonal (ENE). During this time (>8.6 to ∼0.5–0.4 Ma) intra-basin faults synthetic to the west-dipping border-fault nucleated, whereas strain was localised on the segmented border-fault early on. A later rotation of extension orientation (to NW) led to these established faults orienting oblique to rifting. This generated an overall dextral strike–slip setting that led to the development of transfer faults adjacent to the border-fault, and the generation of flower structures and folds over the greater displacement intra-basin faults.  相似文献   

16.
The Indus drainage has experienced major variations in climate since the Last Glacial Maximum (LGM) that have affected the volumes and compositions of the sediment reaching the ocean since that time. We here present a comprehensive first‐order source‐to‐sink budget spanning the time since the LGM. We show that buffering of sediment in the floodplain accounts for ca. 20–25% of the mass flux. Sedimentation rates have varied greatly and must have been on average three times the recent, predamming rates. Much of the sediment was released by incision of fluvial terraces constructed behind landslide dams within the mountains, and especially along the major river valleys. New bedrock erosion is estimated to supply around 45% of the sedimentation. Around 50% of deposited sediment lies under the southern floodplains, with 50% offshore in large shelf clinoforms. Provenance indicators show a change of erosional focus during the Early Holocene, but no change in the Mid–Late Holocene because of further reworking from the floodplains. While suspended loads travel rapidly from source‐to‐sink, zircon grains in the bedload show travel times of 7–14 kyr. The largest lag times are anticipated in the Indus submarine fan where sedimentation lags erosion by at least 10 kyr.  相似文献   

17.
Decaying mountain ranges often show a surprisingly dynamic pattern of landscape evolution. Although one might expect a simple, monotonic decline in relief over time, evidence from several inactive mountain ranges shows alternating sequences of deposition and erosion in the associated basins, suggesting variations in relief and exhumation rate in the ranges themselves. Examples include the Southern Rocky Mountains, the Pyrenees, the European Alps and the Atlas Mountains. In this paper, we explore the possible origins of post‐orogenic landscape dynamics using a simple mathematical model of a mountain range and an adjacent foreland basin. The analysis highlights the importance of mass balance. In particular, a switch from basin exhumation to renewed sedimentation requires either an increase in sediment influx from the range or a decrease in sediment outflux beyond the basin margin. Although it is widely understood that post‐orogenic changes in erosion and sediment flux can have multiple causes (including climate change, regional tectonic uplift or tilting, or exhumation of variable lithologies), an important implication of our analysis is that the impact of such changes must differ in sign or magnitude between the range and the basin to be recorded. This requirement places an important constraint on viable explanations for alternating sequences of deposition and erosion in a decaying mountain‐basin pair.  相似文献   

18.
Postsecular geographies seek to examine how place is linked with identity and how religious identities in turn can be accommodated in public space. Postsecular practices in urban contexts have been researched extensively, but they do not always fully engage with a relational approach to place‐making. This paper argues that through the place‐making practices seen at Virgin Mary statues in Dublin city, Ireland, a relational approach to examining postsecular practices and representations provides a more productive way to understand how the secular and the religious coexist in cities. The paper uses archival and contemporary data gathered from a sample of Marian statues in Dublin city to locate the relational geographies of the religious and the secular. By focussing on the ways that the statues remain uncontested within a changing urban landscape, the paper re‐examines the political significance of religious place‐making practices. It concludes that if geographies of religion in the postsecular city are to have a broader relevance to geography, they need a relational approach to place‐making.  相似文献   

19.
The article suggests Jobberns’ view of geopolitics ultimately rested on the work of British geographer Sir Halford Mackinder overlain by the writing of American political geographers. Jobberns’ geopolitical thinking was, however, also strongly informed by his being a Freemason. WWII, as the overshadowing external event of Jobberns’ early years at Canterbury, amplified his interest in geopolitics both as a way of understanding the world and, at a time when geography was not universally accepted as a university discipline, as a means of promoting to a wider public the utility of a geographical perspective on world affairs.  相似文献   

20.
Detrital fission‐track studies on sedimentary basins surrounding eroding mountain belts provide a powerful tool to reconstruct exhumation histories of the source area. However, examples from active arc‐trench systems are sparse. In this study, we report detrital apatite fission‐track (AFT) data from Holocene and Pleistocene turbiditic trench and modern river sediments at the Chilean margin (36°S‐47°S). Sediment petrography and detrital AFT data point to different major sediment sources, underlining the need for multidisciplinary studies: whereas sediment petrography indicates the erosion of large volumes of volcanic detritus, no such volcanic signal is seen in the detrital age pattern. Areally subordinate plutonic units are identified as the main, often unique sources. This result has important implications for studies of fossil systems, where the feeder areas are eroded, and where the youngest age population is often interpreted to indicate active volcanism. For the southernmost part of the study area in the Patagonian Andes, where the source area is mainly composed of granitoids, the sediment is derived from only small portions along the main divide, pointing to focused glacial erosion there. Our detrital AFT data show no exhumational signal that could be related to the subduction of the actively spreading Chile Ridge at c. 47°S and to the opening of a slab window beneath the South American Plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号