共查询到20条相似文献,搜索用时 46 毫秒
1.
The Gohpur–Ganga section is located southwest of Itanagar, India. The study area and its adjacent regions lie between the Main Boundary Thrust (MBT) and the Himalayan Front Fault (HFF) within the Sub-Himalaya of the Eastern Himalaya. The Senkhi stream, draining from the north, passes through the MBT and exhibits local meandering as it approaches the study area. Here, five levels of terraces are observed on the eastern part, whereas only four levels of terraces are observed on the western part. The Senkhi and Dokhoso streams show unpaired terraces consisting of very poorly sorted riverbed materials lacking stratification, indicating tectonic activity during deposition. Crude imbrications are also observed on the terrace deposits. A wind gap from an earlier active channel is observed at latitude 27°04′42.4″ N and longitude 93°35′22.4″ E at the height of about 35 m from the present active channel of Senkhi stream. Linear arrangements of ponds trending northeast–southwest on the western side of the study section may represent the paleochannel of Dokhoso stream meeting the Senkhi stream abruptly through this gap earlier. Major lineament trends are observed along NNE–SSW, NE–SW and ENE–WSW direction. The Gohpur–Ganga section is on Quaternary deposits, resting over the Siwaliks with angular contact. Climatic changes of Pleistocene–Holocene times seem to have affected the sedimentation pattern of this part of the Sub-Himalaya, in association with proximal tectonism associated with active tectonic activities, which uplifted the Quaternary deposits. Older and younger terrace deposits seem to mark the Pleistocene–Holocene boundary in the study area with the older terraces showing a well-oxidized and semi-consolidated nature compared to the unoxidized nature of the younger terraces. 相似文献
2.
Unconformities in sedimentary successions (i.e. sequence boundaries) form in response to the interplay between a variety of factors such as eustasy, climate, tectonics and basin physiography. Unravelling the origin of sequence boundaries is thus one of the most pertinent questions in the analysis of sedimentary basins. We address this question by focusing on three of the most marked physical discontinuities (sequence boundaries) in the Cenozoic North Sea Basin: top Eocene, near‐top Oligocene and the mid‐Miocene unconformity. The Eocene/Oligocene transition is characterized by an abrupt increase in sediment supply from southern Norway and by minor erosion of the basin floor. The near‐top Oligocene and the mid‐Miocene unconformity are characterized by major changes in sediment input directions and by widespread erosion along their clinoform breakpoints. The mid‐Miocene shift in input direction was followed by a marked increase in sediment supply to the southern and central North Sea Basin. Correlation with global δ18O records suggests that top Eocene correlates with a major long‐term δ18O increase (inferred climatic cooling and eustatic fall). Near‐top Oligocene does not correlate with any major δ18O events, while the mid‐Miocene unconformity correlates with a gradual decrease followed by a major long‐term increase in δ18O values The abrupt increases in sediment supply in post‐Eocene and post‐middle Miocene time correlate with similar changes worldwide and with major δ18O increases, suggesting a global control (i.e. climate and eustasy) of the post‐Eocene sedimentation in the North Sea Basin. Erosional features observed at near‐top Oligocene and at the mid‐Miocene unconformity are parallel to the clinoform breakpoints and resemble scarps formed by mass wasting. Incised valleys have not been observed, indicating that sea level never fell significantly below the clinoform breakpoint during the Oligocene to middle Miocene. 相似文献
3.
Triassic to Early Jurassic climatic trends recorded in the Jameson Land Basin,East Greenland: clay mineralogy,petrography and heavy mineralogy 下载免费PDF全文
Audrey Decou Steven D. Andrews David H. M. Alderton Andrew Morton 《Basin Research》2017,29(5):658-673
During the Early Triassic the Jameson Land Basin (Central East Greenland) was located around 30° N, in the Northern arid belt, but by the Early Jurassic was positioned at a latitude of approximately 50° N. This study examines the record of this transition through a largely continental succession using clay mineralogy, sedimentology, petrography and heavy mineralogy. The Jameson Land Basin is aligned north–south and is 280 km long and 80 km wide. Following an Early Triassic marine phase the basin was filled by predominantly continental sediments. The Early‐to‐Late Triassic succession comprises coarse alluvial clastics (Pingo Dal Formation) overlain by a succession of fine‐grained evaporite‐rich playa/lacustrine sediments (Gipsdalen Formation), indicative of arid climatic conditions. The overlying buff, dolomitic and then red lacustrine mudstones with subordinate sandstones (Fleming Fjord Formation) record reduced aridity. The uppermost Triassic grades into dark organic‐rich, and in places coaly, mudstones and buff coarse‐grained sandstones of lacustrine origin that belong to the Kap Stewart Group, which spans the Triassic–Jurassic boundary, and appear to record more humid climatic conditions. Clay mineralogy analyses highlight significant variations in the kaolinite/illite ratio, from both mudstone and sandstone samples, through the Triassic and into the earliest Jurassic. Complementary heavy mineral analyses demonstrate that the variations recognised in clay mineralogy and sandstone maturity through the Triassic–Early Jurassic succession are not a product of major provenance change or the effect of significant diagenetic alteration. The observed variations are consistent with sedimentological evidence for a long‐term trend towards more humid conditions through the Late Triassic to Early Jurassic, and the suggestion of a significant pluvial episode in the mid‐Carnian. 相似文献
4.
MARK PEARSON 《The Geographical journal》2006,172(4):306-317
Transgenic cotton is promoted in India on the basis that it will improve rural livelihoods, but such claims are contested on the basis that they are 'unscientific'. In this study, discourse analysis is utilized to deconstruct the environmental and scientific narratives employed by two key actors (Monsanto-Mahyco and the Deccan Development Society) in the debate in India. Whilst strong differences in the ideology of the two actors are found to account for their approaches to managing the environment, significant similarities in their approach to science and their recourse to Foucauldian governmentality are also evident. The conclusion considers how the use of discourse analysis could empower the rural poor to take part in the debate in India. 相似文献
5.
AbstractThis research deals with the surface dynamics and key factors – hydrological regime, sediment load, and erodibility of floodplain facies – of frequent channel shifting, intensive meandering, and lateral instability of the Bhagirathi River in the western part of the Ganga-Brahmaputra Delta (GBD). At present, the floodplain of the Bhagirathi is categorized as a medium energy (specific stream power of 10–300 W m?2), non-cohesive floodplain, which exhibits a mixed-load and a meandering channel, an entrenchment ratio >2.2, width–depth ratio >12, sinuosity >1.4, and channel slope <0.02. In the study area, since 1975, four meander cutoffs have been shaped at an average rate of one in every 9–10 years. In the active meander belt and sand-silt dominated floodplains of GBD, frequent shifting of the channel and meander migration escalate severe bank erosion (e.g. 2.5 × 106 m3 of land lost between 1999 and 2004) throughout the year. Remote sensing based spatio-temporal analysis and stratigraphic analysis reveal that the impact of the Farakka barrage, completed in 1975, is not the sole factor of downstream channel oscillation; rather, hydrogeomorphic instability induced by the Ajay–Mayurakshi fluvial system and the erodibility of floodplain sediments control the channel dynamics of the study area. 相似文献
6.
The detrital record of late‐Miocene to Pliocene surface uplift and exhumation of the Venezuelan Andes in the Maracaibo and Barinas foreland basins 下载免费PDF全文
M. A. Bermúdez C. Hoorn M. Bernet E. Carrillo P. A. van der Beek J. I. Garver J. L. Mora K. Mehrkian 《Basin Research》2017,29(Z1):370-395
A multidisciplinary approach, combining sediment petrographic, palynological and thermochronological techniques, has been used to study the Miocene‐Pliocene sedimentary record of the evolution of the Venezuelan Andes. Samples from the Maracaibo (pro‐wedge) and Barinas (retro‐wedge) foreland basins, proximal to this doubly vergent mountain belt, indicate that fluvial and alluvial‐fan sediments of similar composition were shed to both sides of the Venezuelan Andes. Granitic and gneissic detritus was derived from the core of the mountain belt, whereas sedimentary cover rocks and uplifted foreland basin sediments were recycled from its flanks. Palynological evidence from the Maracaibo and Barinas basins constrains depositional ages of the studied sections from late Miocene to Pliocene. The pollen assemblages from the Maracaibo Basin are indicative of mountain vegetation, implying surface elevations of up to 3500–4000 m in the Venezuelan Andes at this time. Detrital apatite fission‐track (AFT) data were obtained from both stratigraphic sections. In samples from the Maracaibo basin, the youngest AFT grain‐age population has relatively static minimum ages of 5 ± 2 Ma, whereas for the Barinas basin samples AFT minimum ages are 7 ± 2 Ma. With exception of two samples collected from the Eocene Pagüey Formation and from the very base of the Miocene Parángula Formation, no evidence for resetting and track annealing in apatite due to burial heating in the basins was found. This is supported by rock‐eval analyses on organic matter and thermal modelling results. Therefore, for all other samples the detrital AFT ages reflect source area cooling and impose minimum age constraints on sediment deposition. The main phase of surface uplift, topography and relief generation, and erosional exhumation in the Venezuelan Andes occurred during the late Miocene to Pliocene. The Neogene evolution of the Venezuelan Andes bears certain similarities with the evolution of the Eastern Cordillera in Colombia, although they are not driven by exactly the same underlying geodynamic processes. The progressive development of the two mountain belts is seen in the context of collision of the Panama arc with northwestern South America and the closure of the Panama seaway in Miocene times, as well as contemporaneous movement of the Caribbean plate to the east and clock‐wise rotation of the Maracaibo block. 相似文献
7.
In the mid‐Cretaceous Lasarte sub‐basin (LSB) [northeastern Basque‐Cantabrian Basin (BCB)] contemporaneous and syn‐depositional thin‐ and thick‐skinned extensional tectonics occur due to the presence of a ductile detachment layer that decoupled the extension. Despite the interest in extension modes of rift basins bearing intra‐stratal detachment layers, complex cases remain poorly understood. In the LSB, field results based on mapping, stratigraphic, sedimentological and structural data show the relationship between growth strata and tectonic structures. Syn‐depositional extensional listric faults and associated folds and faults have been identified in the supra‐detachment thin‐skinned system. But stratigraphic data also indicate the activation of sub‐detachment thick‐skinned extensional faults coeval with the development of the thin‐skinned system. The tectono‐sedimentary evolution of the LSB, since the Late Aptian until the earliest Late Albian, has been interpreted based on thin‐ and thick‐skinned extensional growth structures, which are fossilized by post‐extensional strata. The development of the thin‐skinned system is attributed to the presence of a ductile detachment layer (Upper Triassic Keuper facies) which decoupled the extension from deeper sub‐detachment basement‐involved faulting under a regional extensional/transtensional regime. 相似文献
8.
As the highest part of the central Andean fold‐thrust belt, the Eastern Cordillera defines an orographic barrier dividing the Altiplano hinterland from the South American foreland. Although the Eastern Cordillera influences the climatic and geomorphic evolution of the central Andes, the interplay among tectonics, climate and erosion remains unclear. We investigate these relationships through analyses of the depositional systems, sediment provenance and 40Ar/39Ar geochronology of the upper Miocene Cangalli Formation exposed in the Tipuani‐Mapiri basin (15–16°S) along the boundary of the Eastern Cordillera and Interandean Zone in Bolivia. Results indicate that coarse‐grained nonmarine sediments accumulated in a wedge‐top basin upon a palaeotopographic surface deeply incised into deformed Palaeozoic rocks. Seven lithofacies and three lithofacies associations reflect deposition by high‐energy braided river systems, with stratigraphic relationships revealing significant (~500 m) palaeorelief. Palaeocurrents and compositional provenance data link sediment accumulation to pronounced late Miocene erosion of the deepest levels of the Eastern Cordillera. 40Ar/39Ar ages of interbedded tuffs suggest that sedimentation along the Eastern Cordillera–Interandean Zone boundary was ongoing by 9.2 Ma and continued until at least ~7.4 Ma. Limited deformation of subhorizontal basin fill, in comparison with folded and faulted rocks of the unconformably underlying Palaeozoic section, implies that the thrust front had advanced into the Subandean Zone by the 11–9 Ma onset of basin filling. Documented rapid exhumation of the Eastern Cordillera from ~11 Ma onward was decoupled from upper‐crustal shortening and coeval with sedimentation in the Tipuani‐Mapiri basin, suggesting climate change (enhanced precipitation) or lower crustal and mantle processes (stacking of basement thrust sheets or removal of mantle lithosphere) as possible controls on late Cenozoic erosion and wedge‐top accumulation. Regardless of the precise trigger, we propose that an abruptly increased supply of wedge‐top sediment produced an additional sedimentary load that helped promote late Miocene advance of the central Andean thrust front in the Subandean Zone. 相似文献
9.
Constraining the thermal and denudational evolution of continental margins from extensional episodes to early orogenic stages is critical in the objective to better understand the sediment routing during the growth of orogenic topography. Here, we report 160 detrital zircon U/Pb ages and 73 (U‐Th)/He ages from Albian, Upper Cretaceous and Eocene sandstones from the south‐central Pyrenees. All samples show dominant zircon U/Pb age peaks at 310–320 Ma, indicating a primary contribution from Variscan granites of the central Pyrenean Axial Zone. A secondary population at 450–600 Ma documents zircon grains sourced from the eastern Pyrenees. Zircon (U‐Th)/He ages recovered from older samples document, a Triassic age peak at ca. 241 Ma, corresponding to denudation coeval with the initiation of Atlantic rifting. An Early Cretaceous cooling event at ca. 133 Ma appears consistent with rift‐related exhumation and thermal overprint on the Iberian margin. The (U‐Th)/He age peaks from ca. 80 Ma to ca. 68 Ma with decreasing depositional ages are interpreted to reflect the southward‐migrating thrust‐related exhumation on the pro‐wedge side of the Pyrenean orogen. The increase in lag times, from ca. 15 Ma in the Tremp Formation (ca. 65 Ma) to 28 Ma in the Escanilla Formation (ca. 40 Ma), suggests decreasing exhumation rates from 0.4 km Myr–1 to 0.2 km Myr–1. The apparent inconsistency with convergence rates is used to infer that rocks cooled at 68 Ma may have resided in the crust before final exhumation to the surface. Finally, the cooling event observed at 68 Ma provides support to the inferred acceleration of convergence, shortening and exhumation during Late Cretaceous times. 相似文献
10.
Zhaokun Yan Yuntao Tian Rui Li Pieter Vermeesch Xilin Sun Yong Li Martin Rittner Andrew Carter Chongjian Shao Hu Huang Xiangtian Ji 《Basin Research》2019,31(1):92-113
The Sichuan Basin and the Songpan‐Ganze terrane, separated by the Longmen Shan fold‐and‐thrust belt (the eastern margin of the Tibetan Plateau), are two main Triassic depositional centres, south of the Qinling‐Dabie orogen. During the Middle–Late Triassic closure of the Paleo‐Tethys Ocean, the Sichuan Basin region, located at the western margin of the Yangtze Block, transitioned from a passive continental margin into a foreland basin. In the meantime, the Songpan‐Granze terrane evolved from a marine turbidite basin into a fold‐and‐thrust belt. To understand if and how the regional sediment routing system adjusted to these tectonic changes, we monitored sediment provenance primarily by using detrital zircon U‐Pb analyses of representative stratigraphic samples from the south‐western edge of the Sichuan Basin. Integration of the results with paleocurrent, sandstone petrology and published detrital zircon data from other parts of the basin identified a marked change in provenance. Early–Middle Triassic samples were dominated by Neoproterozoic (~700–900 Ma) zircons sourced mainly from the northern Kangdian basement, whereas Late Triassic sandstones that contain a more diverse range of zircon ages sourced from the Qinling, Longmen Shan and Songpan‐Ganze terrane. This change reflects a major drainage adjustment in response to the Late Triassic closure of the Paleo‐Tethys Ocean and significant shortening in the Longmen Shan thrust belt and the eastern Songpan‐Ganze terrane. Furthermore, by Late Triassic time, the uplifted northern Kangdian basement had subsided. Considering the eastward paleocurrent and depocenter geometry of the Upper Triassic deposits, subsidence of the northern Kangdian basement probably resulted from eastward shortening and loading of the Songpan‐Ganze terrane over the western margin of the Yangtze Block in response to the Late Triassic collision among Yangtze Block, Yidun arc and Qiangtang terrane along the Ganze‐Litang and Jinshajiang sutures. 相似文献
11.
《Singapore journal of tropical geography》2018,39(3):401-420
The Indian state is empowered to acquire land on behalf of private companies by virtue of ‘eminent domain’ outlined in the Land Acquisition Act 1894. Several amendments to the 1894 Land Acquisition Act have broadened the purview of the ‘public purpose’ clause and have facilitated more state intervention in land acquisition on behalf of private capital. Rather than questioning the legitimacy of the prevailing practice of state intervention to resolve the glitches of access to land by private corporations, the New Act of 2013 has expanded the ambit of ‘public purpose’ to include public‐private‐partnership projects. This paper seeks to look into the political economy of why the neoliberal state must continue to acquire land on behalf of the capitalists in the liberalized economy. This paper also attempts to bring out the implications of divergent livelihood outcome under state acquisition and direct corporate land purchase for the land acquisition framework in India through the case study of Rajarhat New Town in West Bengal. 相似文献
12.
Stéphane Homke Jaume Vergés Peter Van Der Beek Manel Fernàndez Eduard Saura Luis Barbero Balazs Badics Erika Labrin 《Basin Research》2010,22(5):659-680
We present the first fission‐track (FT) thermochronology results for the NW Zagros Belt (SW Iran) in order to identify denudation episodes that occurred during the protracted Zagros orogeny. Samples were collected from the two main detrital successions of the NW Zagros foreland basin: the Palaeocene–early Eocene Amiran–Kashkan succession and the Miocene Agha Jari and Bakhtyari Formations. In situ bedrock samples were furthermore collected in the Sanandaj‐Sirjan Zone. Only apatite fission‐track (AFT) data have been successfully obtained, including 26 ages and 11 track‐length distributions. Five families of AFT ages have been documented from analyses of in situ bedrock and detrital samples: pre‐middle Jurassic at ~171 and ~225 Ma, early–late Cretaceous at ~91 Ma, Maastrichtian at ~66 Ma, middle–late Eocene at ~38 Ma and Oligocene–early Miocene at ~22 Ma. The most widespread middle–late Eocene cooling phase, around ~38 Ma, is documented by a predominant grain‐age population in Agha Jari sediments and by cooling ages of a granitic boulder sample. AFT ages document at least three cooling/denudation periods linked to major geodynamic events related to the Zagros orogeny, during the late Cretaceous oceanic obduction event, during the middle and late Eocene and during the early Miocene. Both late Cretaceous and early Miocene orogenic processes produced bending of the Arabian plate and concomitant foreland deposition. Between the two major flexural foreland episodes, the middle–late Eocene phase mostly produced a long‐lasting slow‐ or nondepositional episode in the inner part of the foreland basin, whereas deposition and tectonics migrated to the NE along the Sanandaj‐Sirjan domain and its Gaveh Rud fore‐arc basin. As evidenced in this study, the Zagros orogeny was long‐lived and multi‐episodic, implying that the timing of accretion of the different tectonic domains that form the Zagros Mountains requires cautious interpretation. 相似文献
13.
Stuart Corbridge Glyn Williams Manoj Srivastava René Véron 《Singapore journal of tropical geography》2003,24(2):242-257
This paper considers some practical problems associated with organising large‐scale comparative field research in eastern India. The focus of the paper is on the use of brainstorming and “modified logframes” as two means by which hypotheses about the working of the local state from the point of view of the rural poor could be turned into concrete field questions. The paper is less concerned with ethical and positional issues relating to team‐based research in “the tropics” (on this, see Williams et al., 2003a) than with the equally important if apparently more prosaic issues relating to the flawed but necessary search for objectivity and rigour in comparative field studies. 相似文献
14.
The lower Platte River has undergone considerable change in channel and bar characteristics since the mid-1850s in four 20–25 km-long study stretches. The same net effect of historical channel shrinkage that was detected upstream from Grand Island, Nebraska, can also be detected in the lower river but differences in the behaviors of study stretches upstream and downstream from major tributaries are striking. The least relative decrease occurred downstream from the Loup River confluence, and the stretch downstream from the Elkhorn River confluence actually showed an increase in channel area during the 1940s. Bank erosion was also greater downstream of the tributaries between ca. 1860 and 1938/1941, particularly in stretch RG, which showed more lateral migration. The cumulative island area and the ratio of island area to channel area relative to the 1938/1941 baseline data showed comparatively great fluctuations in median island size in both downstream stretches. The erratic behavior of island size distributions over time indicates that large islands were accreted to the banks at different times, and that some small, newly-stabilized islands were episodically “flushed” out of the system. In the upstream stretches the stabilization of mobile bars to create new, small islands had a more consistent impact over time. Channel decrease by the abandonment of large, long-lived anabranches and by the in-place narrowing resulting from island accretion were more prominent in these upstream stretches. Across all of the study area, channel area appears to be stabilizing gradually as the rate of decrease lessens. This trend began earliest in stretch RG in the late 1950s and was accompanied by shifts in the size distributions of stabilized islands in that stretch into the 1960s. Elsewhere, even in the easternmost study stretch, stabilizing was occurring by the late 1960s, the same time frame documented by investigations of the Platte system upstream of the study area. Comprehensive management plans for the lower Platte River should account, at least in theory, for the observed differences in stream behavior upstream and downstream of the major eastern tributaries. 相似文献
15.
The Cretaceous of southern France is characterised by a long erosional hiatus, outlined with bauxite deposits, which represent the only remaining sedimentary record of a key period for geodynamic reconstructions. Detrital zircons from allochthonous karst bauxites of Languedoc (Southern France) have been dated using LA‐ICP‐MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry), in order to specify the age of deposition and to constrain the provenance of the weathered material. We analysed 671 single detrital zircons grains from three karst bauxitic basins, stretching from close to the Variscan Montagne Noire to the present‐day Mediterranean Sea. Analytical results provide Variscan (300–350 Ma) and Late Proterozoic (550–700 Ma) ages as primary groups. In addition, Middle‐, Late Proterozoic and Early Archean (oldest grain at 3.55 Ga) represent significant groups. Mid‐Cretaceous zircons (118–113 Ma) provide a pooled age of 115.5 ± 3.8 Ma, which constitutes the maximum age for bauxite deposition. Results also suggest a dual source for the Languedoc bauxite: one generalised sedimentary source of regional extent and a localised source in the Variscan basement structural high, that has been progressively unroofed during Albian. Integration of these new findings with previously published thermochronological data support the presence of an Early Cretaceous marly cover on the Variscan basement, which has been weathered and then, removed during the Albian. The Languedoc bauxite provide a spatial and temporal link between the uplift of southern French Massif Central to the north, and the Pyrenean rift and its eastward extension to the south. These new results allow to constrain the timing and distribution of uplift/subsidence during the mid‐Cretaceous events in relation with the motion of the Iberian plate relative to Eurasia. 相似文献
16.
The Spiti River that drains through the arid Trans-Himalayan region is studied here. The relict deposits exposed along the river provide an opportunity to understand the interaction between the phases of intense monsoon and surface processes occurring in the cold and semi arid to-arid Trans-Himalayan region. Based on geomorphological observation the valley is broadly divided into the upper and lower Spiti Valley. The braided channel and the relict fluvio-lacustrine deposits rising from the present riverbed characterize the upper valley. The deposits in the lower valley occur on the uplifted bedrock strath and where the channel characteristics are mainly of meandering nature. Conspicuous is the occurrence of significantly thick lacustrine units within the relict sedimentary sequences of Spiti throughout the valley. The broad sedimentary architecture suggests the formation of these palaeolakes due landslide-driven river damming. The Optically Stimulated Luminescence (OSL) dating of quartz derived from the bounding units of the lacustrine deposits suggests that the upper valley preserves the phase of deposition around 14–6 ka and in the lower valley around 50–30 ka. The review of published palaeoclimatic palaeolake chronology of Spiti Valley indicates that the lakes were probably formed during the wetter conditions related to Marine Isotope Stage III and II. The increased precipitation during these phases induced excessive landsliding and formation of dammed lakes along the Spiti River. The older lacustrine phase being preserved on the uplifted bedrock strath in the lower valley indicates late Pleistocene tectonic activity along the Kaurick Chango normal fault. 相似文献
17.
Clinoform growth in a Miocene,Para‐tethyan deep lake basin: thin topsets,irregular foresets and thick bottomsets 下载免费PDF全文
Rattanaporn Fongngern Cornel Olariu Ronald J. Steel Csaba Krézsek 《Basin Research》2016,28(6):770-795
Late Miocene lacustrine clinoforms of up to 400 m high are mapped using a 1700 km2 3‐D seismic data set in the Dacian foreland basin, Romania. Eight Meotian clinoforms, constructed by sediment from the South Carpathians, prograded around 25 km towards southwest. The individual clinothems show thin (10–60 m thick), if any, topsets, disrupted foresets and highly aggradational bottomsets. Basin‐margin accretion occurred in three stages with changing of clinoform heights and foreset gradients. The deltaic system prograded into an early‐stage deep depocenter and contributed to high gradient clinoforms whose foresets were dominated by closely (100–200 m) spaced 1.5–2 km wide V‐shaped sub‐lacustrine canyons. During intermediate‐stage growth, 2–4 km wide canyons were dominant on the clinoform foresets. From the early to intermediate stages, the lacustrine shelf edges were consistently indented. The late‐stage outbuilding was characterised by smaller clinoforms with smoother foresets and less indentation along the shelf edge. Truncated and thin topsets persisted through all three stages of clinoform evolution. Nevertheless, the resulting long‐term flat trajectory shows alternating segments of forced and low‐amplitude normal regressions. The relatively flat trajectory implies a constant base level over time and was due to the presence of the Dacian–Black Sea barrier that limited water level rise by spilling to the Black Sea. Besides the characteristic shelf‐edge incision of the thin clinoform topsets and the resultant sediment bypass at the shelf edge, the prolonged regressions of the shelf margin promoted steady sediment supply to the basin. The high sediment supply at the shelf edges generated long‐lived slope sediment conduits that provided sustained sediment transport to the basin floor. Clinothem isochore maps show that large volumes of sediment were partitioned into the clinoform foresets, and especially the bottomsets. Sediment predominantly derived from frequent hyperpycnal flows contributed to very thick, ca. 300–400 m in total, bottomsets. Decreasing subsidence over time from the foredeep resulted in diminishing accommodation and clinoform height, reduced slope channelization and smoother slope morphology. 相似文献
18.
In the Nile deep‐sea fan, thin‐skinned deformation detaching on a layer of Messinian salt has generated an upslope to downslope progression from growth faults, to polygonal minibasins bounded by salt ridges, to buckle folds. Such progression is common in salt‐bearing passive margins, where gravity spreading of the salt–sediment system causes proximal thin‐skinned extension on the shelf and upper slope, and distal contraction along and in front of the lower slope. In the Eastern Nile deep‐sea fan, this structural progression seems to be restricted to a corridor bounded by NW–SE‐trending lineaments more than 200 km in length. These are associated with salt ridges and record strike–slip movements. In the absence of a large grid of deep‐penetrating seismic data accurately imaging the basement, different likely hypotheses have been advanced about the origin of this corridor: (1) it may result from possible deep‐seated tectonics related to the Rift of Suez, combined with salt‐related deformation or, (2) by complex interaction between the overburden's gravity spreading and pre‐existing pre‐Messinian paleo‐topographic features, particularly the possible buttressing effect of a seamount located North of the eastern Nile deep‐sea fan. In order to understand how this corridor could have been generated, we used a series of physical experiments to test the effect on three‐dimensional spreading of a sediment lobe of the following parameters: (1) active, crustal, oblique extension, (2) a dormant subsalt graben, (3) a passive buttress, such as a seamount and (4) complex paleo‐topographic features along the Egyptian margin affecting initial salt distribution. These experiments show that the presence of a distal buttress, combined with a complex Messinian topography best explain the complex deformational pattern observed in the eastern Nile deep‐sea fan. 相似文献
19.
Rifting and pre‐rift lithosphere variability in the Orphan Basin,Newfoundland margin,Eastern Canada 下载免费PDF全文
The Orphan Basin, lying along the Newfoundland rifted continental margin, formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. To investigate the evolution of the Orphan Basin and the factors that governed its formation, we (i) analysed the stratigraphic and crustal architecture documented by seismic data (courtesy of TGS), (ii) quantified the tectonic and thermal subsidence along a constructed geological transect, and (iii) used forward numerical modelling to understand the state of the pre‐rift lithosphere and the distribution of deformation during rifting. Our study shows that the pre‐rift lithosphere was 200‐km thick and rheologically strong (150‐km‐thick elastic plate) prior to rifting. It also indicates that extension in the Orphan Basin occurred in three distinct phases during the Jurassic, the Early Cretaceous and the Late Cretaceous. Each rifting phase is characterized by a specific crustal and subcrustal thinning configuration. Crustal deformation initiated in the eastern part of the basin during the Jurassic and migrated to the west during the Cretaceous. It was coupled with a subcrustal thinning which was reduced underneath the eastern domain and very intense in the western domains of the basin. The spatial and temporal distribution of thinning and the evolution of the lithosphere rheology through time controlled the tectonic, stratigraphic and crustal architecture that we observe today in the Orphan Basin. 相似文献
20.
The depiction of pristine countryside in New Zealand film has engendered a cultural disconnection with the environmental stories within the landscape. In this essay, we briefly examined the meaning of rural New Zealand landscape and its role in film. This research was done in part by making a short documentary, River Dog, a film about the rural New Zealand landscape. The character, plot and underlying message of River Dog were framed within visually relevant archetypes to form a constructive environmental message. Here, we examined River Dog's use of empathetic storytelling, an approach used to communicate an environmental issue without promulgating science or politics. 相似文献