首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acequias (irrigation channels and ditches) were used by Spanish settlers, their descendants, and Native Americans in New Mexico. Several such features were recently excavated in Santa Fe, but material for numeric dating was difficult to find. Therefore, for this high‐energy‐deposition irrigation‐feature setting we applied optically stimulated luminescence (OSL) sediment dating methods to determine the timing of last filling of some of these acequias. We report multigrain single‐aliquot quartz (MGSAQ) OSL dating results and the first single‐grain quartz (SGQ) OSL dating results for irrigation features. One sample yielded an average age of 96 ± 13 yr, consistent with the maximum expected age of 127 yr (before 2007). An OSL age of 175 ± 15 yr for another sample delimits a sedimentation event since the first construction of that feature ca. 300 yr ago. A sample known to be younger than 400–450 yr but predating the mid‐19th century gave an SGQ age of 376 ±31 yr. These results indicate that: (1) Regional quartz in New Mexico is highly favorable to OSL dating; (2) in this setting, SGQ OSL dating is preferred to MGSAQ dating; and (3) for the last 500–600 yr, SGQ OSL dating in such settings is preferred to 14C dating because OSL dating lacks those ambiguities inherent in converting 14C ages to calendar years. © 2009 Wiley Periodicals, Inc.  相似文献   

2.
The alternation of terrestrial and marine deposits is an indicator of past environmental and sea‐level changes. The age of deposition is usually dated by means of radiocarbon. However, radiocarbon dates of molluscan shells from coastal areas may be complicated by various sources of carbon, and problematic for deposits of 40–50 ka or older. Herein, we apply the Optically Stimulated Luminescence (OSL) dating method to date samples from terrestrial and marine/coastal sediments extracted from three cores in the south Bohai Sea, China. Multiple‐ and single‐aliquot regenerative‐dose procedures using OSL signals from fine‐silt (4–11 μm), coarse‐silt (38–63 μm) and fine‐sand (63–90 or 90–125 μm) quartz were employed to determine the equivalent dose (D e). The results showed that: (i) OSL ages from quartz of different grain sizes and different protocols are consistent with each other; (ii) for Holocene samples, most of the radiocarbon dates agree well with OSL ages; (iii) for pre‐Holocene samples, radiocarbon dates cluster at 40–50 14 C ka BP, whereas OSL ages are in stratigraphic order from 11 ka to 176 ka. Because of the self‐consistency of the quartz OSL ages, the stratigraphic agreement in the three cores, and the clustering of the radiocarbon dates, we suggest that the quartz OSL ages are more reliable with respect to dating the samples from the south Bohai Sea. Finally, the four marine strata identified in the south Bohai Sea are likely to have formed during the Holocene, Marine Isotopic Stage (MIS) 3–5, MIS 6 and probably MIS 7, respectively.  相似文献   

3.
We tested the suitability of the fine‐grained quartz (4–11 μm) Optical Stimulated Luminescence (OSL) and thermally‐transferred OSL (TT‐OSL), and the fine‐grained polymineral (4–11 μm) post‐infrared IRSL (post‐IR IRSL or pIRIR) signals for dating samples from aeolian‐lacustrine deposits from the Xiaochangliang archaeological profile in the Nihewan Basin, China; these deposits include material from the Jaramillo subchron (c. 1.0 Ma). In the upper aeolian section, the OSL and pIRIR290 ages are consistent with each other, and show that the upper 8.8 m was deposited between c. 0.3 and c. 140 ka. The luminescence ages indicate a major discontinuity in deposition between the aeolian and the older lacustrine deposits. Below this hiatus at 9.4 m (i.e. in the lacustrine sediments) all three signals are found to be in field saturation (no further systematic increase in burial dose with depth) despite the TT‐OSL signal (apparent mean burial dose ~880 Gy) being well below saturation on the laboratory growth curve. This is in contrast to the pIRIR290 signal, which saturates in the field at a level consistent with laboratory saturation. This results in a practical upper limit to the measured burial dose of ~900 Gy (2D0). Thus for the TT‐OSL and pIRIR290 signals, the upper limits for dating lacustrine deposits are <260 ka and c. 240 ka, respectively. These results have major implications for the appropriate future application of these signals. The ages of our lacustrine samples cannot be regarded as necessarily accurate ones; nevertheless, these ages provide the first long series absolute chronology for study of local palaeolithic and geomorphic evolution history aside from the magnetostratigraphical results available before this research.  相似文献   

4.
《Quaternary Science Reviews》2003,22(10-13):1077-1084
This study is part of a multidisciplinary project dealing with the investigation of geoarchaeological sites on the Egyptian Plateau. With the aim of reconstructing the palaeoecological background, providing age assessment which put the various results in an age frame that is of special interest. Here, results of one particular section have been selected because of a discrepancy in age determination based on different approaches. Radiocarbon ages were inconsistent with the age range provided by the archaeological context in this area. The underestimation observed is inferred to be caused by poor 14C-sample quality. An attempt to overcome this problem was the determination of the depositional ages of the non-organic sediments by using optically stimulated luminescence (OSL). Equivalent doses of four sediment samples were estimated from OSL measurements carried out on sand-sized quartz grains using the single-aliquot regenerative-dose (SAR) protocol. Dose rates were calculated from neutron activation analysis results. From the OSL ages obtained, we conclude that the sediment sequence exposing an alternation of lacustrine and eolian layers was deposited in a short period of time during the mid-Holocene (mean of OSL ages ∼7.8 ka). Compared to the 14C ages, the luminescence ages fit better into the archaeological context confirmed by surface dating.  相似文献   

5.
湖泊沉积物的14 C和光释光测年* ——以固城湖为例   总被引:3,自引:0,他引:3  
富含有机质的湖泊沉积物被认为是14 C测年建立古环境记录年代标尺的理想材料,光释光测年方法近年开始应用于水成沉积物的定年。应用14 C和光释光两种方法对江苏固城湖湖心钻孔岩芯进行了年龄测定,结果表明全样有机质的14 C年龄与石英的光释光年龄存在系统差异,后者较前者年轻约2000年。系统光释光测年研究排除了光释光年龄低估的可能性,所以,二者的差异可能是湖泊沉积物碳库效应的反映。  相似文献   

6.
Radiocarbon dating of bulk organic matter is the most commonly used method for establishing chronologies of lake sediments for palaeoclimate reconstructions on the Tibetan Plateau. However, this method is likely to be problematic because the dated material often suffers from old carbon contamination. Recently, advances in luminescence‐based chronological techniques have provided new options for dating lacustrine sediments. In the current study, we tested for the first time the applicability of a new post‐IR IRSL (pIRIR) measurement protocol for dating fine‐grained polymineral material from a deep‐lake sediment core from the central part of Tangra Yumco, on the southern Tibetan Plateau. Our results show that: (i) radioactive disequilibria in the uranium decay chain were observed in the studied lake sediments, and thus taken into account for dose rate calculation by using a dynamic modelling approach; (ii) the suitability and robustness of the pIRIR protocol measured at 150°C (pIRIR150) for our samples are confirmed by a set of luminescence characteristic tests as well as the agreement with an independent age control; (iii) turbidite deposition partly caused an insufficient resetting of luminescence signals and thus apparent overestimation in luminescence dating; (iv) compared with the luminescence‐based age‐depth model, the 14C ages of bulk organic matter from the studied core generally yielded an age difference of ~2 ka, which is attributed to hardwater reservoir effects in Tangra Yumco. This study highlights the need for multi‐dating approaches of lake sedimentary archives on the Tibetan Plateau.  相似文献   

7.
The lacustrine deposits of lakes in arid central Asia (ACA) potentially record palaeoclimatic changes on orbital and suborbital time scales, but such changes are still poorly understood due to the lack of reliable chronologies. Bosten Lake, the largest freshwater inland lake in China, is located in the southern Tianshan Mountains in central ACA. A 51.6‐m‐deep lacustrine succession was retrieved from the lake and 30 samples from the succession were used for luminescence dating to establish a chronology based on multi‐grain quartz OSL and K‐feldspar post‐IR IRSL (pIRIR290) dating. Quartz OSL ages were only used for samples from the upper part of the core. The K‐feldspar luminescence characteristics (dose recovery test, anomalous fading test, first IR stimulation temperature plateau test) are satisfactory and from the relationship amongst the quartz OSL, IR50 and pIRIR290 doses we infer that the feldspar signals are likely to be well bleached at deposition. Bacon age‐depth modelling was used to derive a chronology spanning the last c. 220 ka. The chronology, lithology and grain‐size proxy record indicate that Bosten Lake formed at least c. 220 ka ago and that lake levels fluctuated frequently thereafter. A stable deep lake occurred at c. 220, 210–180, c. 165, 70–60, 40–30 and 20–5 ka, while shallow levels occurred at c. 215, 180–165, 100–70, 60–40 and 30–20 ka. Bosten Lake levels decreased by at least ~29 m and possibly the lake even dried up between c. 160 and c. 100 ka. We suggest that the water‐level fluctuations in the lakes of ACA may not respond directly to climatic changes and may be affected by a number of complex factors.  相似文献   

8.
The age framework of Qarhan Salt Lake in arid western China is still controversial due in part to (1) age discrepancy between conventional 14C and 230Th dating results, and (2) no AMS 14C ages of organic carbon from drilling cores in Qarhan Salt Lake were reported until now. In order to discuss these chronological problems, upper 54.50 m lacustrine sediments from a drilling core (ISL1A) recovered from Qarhan Salt Lake were dated based on 230Th and AMS 14C dating techniques. Results show that (1) AMS 14C ages of total organic carbon (TOC) from 4.65 to 30.29 m are almost in stratigraphic order and consistent with 230Th ages of halite in the corresponding layers; (2) AMS 14C ages of TOC from 30.29 to 54.50 m are younger with increasing depth. This phenomenon was also found in Shell Bar in the study area, suggesting that AMS 14C ages from upper 30.29 m are more reliable while those from lower 24.21 m in ISL1A may be underestimated; (3) 230Th ages of halite from lower 24 m lacustrine sediments are obviously older than AMS 14C ages of TOC in the corresponding layers, which results into different age framework of salt lake sediments in Qarhan Salt Lake; (4) if extrapolating these reliable AMS 14C ages in ISL1A, similar age framework with 230Th ages in this core confirms that 230Th ages are much close to the true ages of these sediments, which suggests that the forming timing of the bottom salt layer is ~50 ka.  相似文献   

9.
Here we investigate the use of optically stimulated luminescence (OSL) for dating cobbles from the body of successive beach ridges and compare cobble surface‐derived ages to standard quartz OSL ages from sand. Between four and eight cobbles and sand samples (age control) were dated with the luminescence method, taken from the modern beach and from beach ridges on the south and north extremes of a prograding spit on the westernmost coast of Lolland, Denmark. Luminescence‐depth profiles perpendicular to the surfaces of the cobbles show that the feldspar infrared signals stimulated at 50 °C were fully reset to various depths into the cobbles prior to final deposition; as a result, the equivalent doses determined from close to the surface of such cobbles can be used to calculate burial ages. Beach‐ridge burial ages given by the average of ages of individual cobbles taken from the same site are consistent, within errors, with the ages derived from the sand samples. Cobble‐ and sand‐derived ages show that the southernmost beach ridge at Albuen was formed around 2 ka ago, indicating that this sandy spit is younger than other coastal systems in Denmark. The agreement between ages derived from clasts and from standard quartz OSL in this study confirms that, even in the absence of sandy sediments, we can reliably date sites using OSL by targeting larger clasts. In addition, the record of prior light exposure contained in the shape of the cobbles’ luminescence‐depth profile removes one of the major uncertainties (i.e. the degree of signal reset prior to burial) in the luminescence dating of high latitude sites.  相似文献   

10.
博斯腾湖湖泊沉积物光释光年代测量*   总被引:2,自引:0,他引:2  
使用光释光年代学的单片再生法测量了博斯腾湖沉积剖面中碳酸盐泥及粉砂质泥底部的浅湖相灰色粉细砂和风成沙的年龄,对剖面上部碳酸盐层中陆生植物残体进行了AMS 14 C测年。通过不同测片的等效剂量(De)值的分布状况评价了样品的晒褪程度,选择不随灵敏度校正后的自然释光信号变化的相对集中的等效剂量(De)值计算了样品的埋藏年龄。通过这些年龄结果的对比,发现石英矿物的OSL年龄和AMS 14 C年龄在地层上是一致的,表明尽管在浅湖相细砂中存在不完全晒褪,但根据相对较小而集中的De值计算得到的年龄结果是可靠的。这些年龄结果和地层资料揭示末次冰消期以来至早全新世,博斯腾湖处于无水干盆地向深水湖泊转化的浅水湖泊状态,现代深水博斯腾湖大约形成于距今8ka前后。  相似文献   

11.
The Koktokay No. 3 pegmatite is the largest Li–Be–Nb–Ta–Cs pegmatitic rare‐metal deposit of the Chinese Altai orogenic belt, and is famous for its concentric ring zonation pattern (nine internal zones). However, the formation age and evolution time span have been controversial. Here, we present the results of LA‐ICP–MS zircon U–Pb dating and muscovite 40Ar–39Ar dating. Four groups of zircon U–Pb ages (~210 Ma, ~193–198 Ma, ~186–187 Ma and ~172 Ma) for Zones II, V, VI, VII, and VIII, and a weighed mean 206Pb/238U age of 965 ± 11 Ma for Zone IV are identified. Also, Zones II, IV, and VI have muscovite 40Ar–39Ar plateau ages of 179.7 ± 1.1 Ma, 182.1 ± 1.0 Ma, and 181.8 ± 1.1 Ma, respectively. Considering previous U–Pb age studies (Zones I, V, and VII), the ages of emplacement, Li mineralization peak, hydrothermal stage of the No. 3 pegmatite are in ranges of 193–198 Ma, 184–187 Ma and 172–175 Ma, with weighted mean 206Pb–238U ages of 194.8 ± 2.3 Ma, 186.6 ± 1.3 Ma and 173.1 ± 3.9 Ma, respectively. The No. 3 pegmatite formed in the early Jurassic. The results of xenocrysts suggest that there is another pegmatite forming event of around 210 Ma in the mining district and the old zircon U–Pb ages imply that Neoproterozoic crustal rocks pertain to sources of the No. 3 pegmatite. Including the previous muscovite 40Ar–39Ar age studies (Zones I and V), a cooling age range of 177–182 Ma is considered as the time of hydrothermal stage and end of formation. The evolution process of the No. 3 pegmatite lasted 16 Ma. Therein, the magmatic stage continued for 9–11 Myr and the magmatic–hydrothermal transition and hydrothermal stages were sustained at 5–7 Ma. These time spans are long because of huge scale, cupola shape, large formation depth, and complex internal zoning patterns and formation processes. Considering some pegmatite dikes in the Chinese Altai, there is an early Jurassic pegmatite forming event.  相似文献   

12.
Reliable dating of glaciomarine sediments deposited on the Antarctic shelf since the Last Glacial Maximum (LGM) is challenging because of the rarity of calcareous (micro‐) fossils and the recycling of fossil organic matter. Consequently, radiocarbon (14C) ages of the acid‐insoluble organic fraction (AIO) of the sediments bear uncertainties that are difficult to quantify. Here we present the results of three different methods to date a sedimentary unit consisting of diatomaceous ooze and diatomaceous mud that was deposited following the last deglaciation at five core sites on the inner shelf in the western Amundsen Sea (West Antarctica). In three cores conventional 14C dating of the AIO in bulk samples yielded age reversals down‐core, but at all sites the AIO 14C ages obtained from diatomaceous ooze within the diatom‐rich unit yielded similar uncorrected 14C ages between 13 517 ± 56 and 11 543 ± 47 years before present (a BP). Correction of these ages by subtracting the core‐top ages, which probably reflect present‐day deposition (as indicated by 210Pb dating of the sediment surface at one core site), yielded ages between ca. 10 500 and 8400 cal. a BP. Correction of the AIO ages of the diatomaceous ooze by only subtracting the marine reservoir effect (MRE) of 1300 a indicated deposition of the diatom‐rich sediments between 14 100 and 11 900 cal. a BP. Most of these ages are consistent with age constraints between 13.0 and 8.0 ka for the diatom‐rich unit, which we obtained by correlating the relative palaeomagnetic intensity (RPI) records of three of the sediment cores with global and regional reference curves. As a third dating technique we applied conventional radiocarbon dating of the AIO included in acid‐cleaned diatom hard parts extracted from the diatomaceous ooze. This method yielded uncorrected 14C ages of only 5111 ± 38 and 5106 ± 38 a BP, respectively. We reject these young ages, because they are likely to be overprinted by the adsorption of modern atmospheric carbon dioxide onto the surfaces of the diatom hard parts prior to sample graphitisation and combustion for 14C dating. The deposition of the diatom‐rich unit in the western Amundsen Sea suggests deglaciation of the inner shelf before ca. 13 ka BP. The deposition of diatomaceous oozes elsewhere on the Antarctic shelf around the same time, however, seems to be coincidental rather than directly related. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The results of eight radiocarbon datings of Lake Chapala sediments (site T46) are presented, the age inversions (AI) observed and their age progression discussed. As deduced from some AIs and the 210Pb activity (site CHP4), the bioturbation zone in the lake varies over a depth of 5–25 cm. The linear sedimentation rates (LSRs) calculated from 14C ages do not match the LSR calculated from unsupported 210Pb activity for the upper sediments. This demonstrates the usefulness of dating sediments with complementary radiometric techniques such as short-lived isotope counting (SLIC), i.e., 210Pb and 137Cs. This approach leads to the following conclusions: (1) The incorporation of detrital particles with ancient carbon into the sedimentary column of the lake occurred by a combination of: (a) the presence of outcrops of hydrothermal petroleum with ages >40 ka (ka = thousands of years) in the lake, and (b) mass transport due to the presence of two elongated gyre circulation patterns integrated by cyclonic circulation (counterclockwise) in the north portion of the lake and anticyclonic circulation in the southern part. (2) Consequently, the 14C ages of shallow lake sediments have geologic ages one order of magnitude greater compared to their ages determined by the 210Pb method. (3) A bioturbation mechanism is not necessary to explain the 14C AI in the top 70 cm and from 110 to 150 cm depth of the sediments. (4) According to the biological proxies data for the last 600 years B.P., the paleoclimate at Lake Chapala has changed from sub-humid to dry environmental conditions, and eutrophication has increased over the past 100 years due to local input from ongoing agricultural activities.  相似文献   

14.
Large old landslides are common in the Three Gorges area. Baota landslide, a large rockslide, is one of the largest landslides in the Three Gorges area. In the landslide body there are two terraces to be recognized. The two terrace deposits is not a two-grade terrace, but mainly remnants left by an occurrence of Baota landslide. Optically stimulated luminescence (OSL) dating suggests that the age of the terrace deposits is 38–32 kyr BP. The OSL ages along with other Thermoluminescence (TL) and Radiocarbon (14C) ages support the conclusion that the Baota landslide was originally triggered by strong precipitation occurred in a warm climate period of 30,000–40,000 years BP.  相似文献   

15.
In this study we present optically stimulated luminescence (OSL) dating results obtained at one of the most important open‐air Middle Palaeolithic sites in the Sierra de Atapuerca foothills – Hotel California. We also assess the possibility of obtaining extended‐range OSL chronologies for a nearby Middle Pleistocene fluvial deposit using several novel methods, namely OSL dating of individual quartz ‘supergrains’, multi‐grain aliquot thermally transferred OSL (TT‐OSL) dating and the first application of a single‐grain TT‐OSL dating procedure. Four single‐grain OSL ages constrain the Middle Palaeolithic occupation of Hotel California to between 71±6 and 48±3 ka. The Hotel California single‐grain equivalent dose (De) distributions are highly overdispersed and contain several dose populations, which are probably attributable to post‐depositional sediment mixing, partial bleaching and intrinsic scatter. The reliability of multi‐grain aliquot OSL dating is compromised by the complex underlying De dispersion affecting these samples, as well as by biasing multi‐grain averaging effects. Extended‐range OSL and TT‐OSL chronologies for the nearby Pico River terrace are consistent with each other and with broad independent age control. These experimental approaches yield a weighted average age of 348±16 ka for terrace TA9 of the Arlanzón River sequence. Our results highlight the benefits of comparing ages obtained using several OSL methodologies to improve the robustness of luminescence chronologies. They also demonstrate the potential that single‐grain OSL techniques offer for establishing improved age constraints on the many other Middle Palaeolithic sites found at Atapuerca and elsewhere across north‐central Spain.  相似文献   

16.
《Quaternary Science Reviews》2003,22(10-13):1139-1143
As part of a systematic palaeohydrological reconstruction of lake level fluctuations during the Last Glacial Maximum, a transect of cores from ancient Lake Xinias in central Greece has already been studied with respect to pollen, sediment and mineral magnetic analyses. The chronology was based on 14C AMS dating of terrestrial plant macrofossil remains from peat and clayey peat (Palaeogeog. Palaeoclimatol. Palaeoecol. 158 (2000) 65). This site thus provides an opportunity for the comparison of fine grain optically stimulated luminescence (OSL) ages of water–lain sediments with an independent chronology. We present here infrared (IR), post-IR blue and blue OSL characteristics of the fine grain sediments from Lake Xinias and a preliminary comparison with independent ages. The equivalent doses based on the IR results are about 40% of those based on post-IR blue stimulation, which in turn are 10–15% below those based on quartz OSL. We discuss the ages derived from the 3 signals in terms of the independent chronology, and draw conclusions about initial bleaching of the quartz and feldspar components, and the reliability of the post-IR blue signal as a chronometer.  相似文献   

17.
Laser Raman spectroscopy and cathodoluminescence (CL) images show that zircon from Sulu‐Dabie dolomitic marbles is characterized by distinctive domains of inherited (detrital), prograde, ultrahigh‐pressure (UHP) and retrograde metamorphic growths. The inherited zircon domains are dark‐luminescent in CL images and contain mineral inclusions of Qtz + Cal + Ap. The prograde metamorphic domains are white‐luminescent in CL images and preserve a quartz eclogite facies assemblage of Qtz + Dol + Grt + Omp + Phe + Ap, formed at 542–693 °C and 1.8–2.1 GPa. In contrast, the UHP metamorphic domains are grey‐luminescent in CL images, retain the UHP assemblage of Coe + Grt + Omp + Arg + Mgs + Ap, and record UHP conditions of 739–866 °C and >5.5 GPa. The outermost retrograde rims have dark‐luminescent CL images, and contain low‐P minerals such as calcite, related to the regional amphibolite facies retrogression. Laser ablation ICP‐MS trace‐element data show striking difference between the inherited cores of mostly magmatic origin and zircon domains grown in response to prograde, UHP and retrograde metamorphism. SHRIMP U‐Pb dating on these zoned zircon identified four discrete 206Pb/238U age groups: 1823–503 Ma is recorded in the inherited (detrital) zircon derived from various Proterozoic protoliths, the prograde domains record the quartz eclogite facies metamorphism at 254–239 Ma, the UHP growth domains occurred at 238–230 Ma, and the late amphibolite facies retrogressive overprint in the outermost rims was restricted to 218–206 Ma. Thus, Proterozoic continental materials of the Yangtze craton were subducted to 55–60 km depth during the Early Triassic and recrystallized at quartz eclogite facies conditions. Then these metamorphic rocks were further subducted to depths of 165–175 km in the Middle Triassic and experienced UHP metamorphism, and finally these UHP metamorphic rocks were exhumed to mid‐crustal levels (about 30 km) in the Late Triassic and overprinted by regional amphibolite facies metamorphism. The subduction and exhumation rates deduced from the SHRIMP data and metamorphic P–T conditions are 9–10 km Myr?1 and 6.4 km Myr?1, respectively, and these rapid subduction–exhumation rates may explain the obtained P–T–t path. Such a fast exhumation suggests that Sulu‐Dabie UHP rocks that returned towards crustal depths were driven by buoyant forces, caused as a consequence of slab breakoff at mantle depth.  相似文献   

18.
The recent discovery of a subfossil polar bear (Ursus maritimus) jawbone in the Poolepynten coastal cliff sequence, western Svalbard, and its implications for the natural history of the polar bear motivated an effort to better constrain the environmental history and age envelope of the Poolepynten sediment sequence. The focus of the present study is on the lithostratigraphy of the coastal cliffs and on re‐dating the sequence using the Optically Stimulated Luminescence (OSL) dating technique. We report a revised lithostratigraphy and nine new OSL ages. It is concluded that the Poolepynten sequence contains evidence of four regional glaciation events, recorded in the strata as erosional unconformities or glacial deposits followed by shallow‐marine deposition signifying transgressions and subsequent glacio‐isostatic rebound and regression. Our OSL ages refine previous age determinations (14C and IRSL) and support the interpretation that the subfossil polar bear jawbone is probably of last interglacial (Eemian) age.  相似文献   

19.
《Applied Geochemistry》2005,20(10):1965-1973
The shells of marine and fresh water mollusks can serve as effective archives in retrieving information on natural and anthropogenic environmental changes. The advantage of using bivalves is that they integrate water chemistry changes into their shells during their life span. Retrospective study of environmental changes and pollutants using bivalve shells requires precise determination of the time of incorporation into the abiotic environmental matrix (here after age) of the specimen. For the first time, a set of archived bivalve samples (for which date of the death/collection is known) has been analyzed to establish the ages of mollusk shells using the 210Pb–226Ra disequilibrium method. In addition, Sr and 90Sr were analysed. The ages obtained using the 210Pb/226Ra disequilibrium dating method agrees well with the calendar years calculated from the date of death/collection. The ages obtained can be utilized to reconstruct the 90Sr levels in the water column at sites where the mollusk shells were collected.  相似文献   

20.
Alexanderson, H., Johnsen, T. & Murray, A. S. 2009: Re‐dating the Pilgrimstad Interstadial with OSL: a warmer climate and a smaller ice sheet during the Swedish Middle Weichselian (MIS 3)? Boreas, 10.1111/j.1502‐3885.2009.00130.x. ISSN 0300‐9483. Pilgrimstad in central Sweden is an important locality for reconstructing environmental changes during the last glacial period (the Weichselian). Its central location has implications for the Scandinavian Ice Sheet as a whole. The site has been assigned an Early Weichselian age (marine isotope stage (MIS) 5 a/c; >74 ka), based on pollen stratigraphic correlations with type sections in continental Europe, but the few absolute dating attempts so far have given uncertain results. We re‐excavated the site and collected 10 samples for optically stimulated luminescence (OSL) dating from mineral‐ and organic‐rich sediments within the new Pilgrimstad section. Single aliquots of quartz were analysed using a post‐IR blue single aliquot regenerative‐dose (SAR) protocol. Dose recovery tests were satisfactory and OSL ages are internally consistent. All, except one from an underlying unit that is older, lie in the range 52–36 ka, which places the interstadial sediments in the Middle Weichselian (MIS 3); this is compatible with existing radiocarbon ages, including two measured with accelerator mass spectrometry (AMS). The mean of the OSL ages is 44±6 ka (n=9). The OSL ages cannot be assigned to the Early Weichselian for all reasonable adjustments to water content estimates and other parameters. The new ages suggest that climate was relatively mild and that the Scandinavian Ice Sheet was absent or restricted to the mountains for at least parts of MIS 3. These results are supported by other recent studies completed in Fennoscandia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号