首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
金沙江石鼓-宜宾段河谷-水系演化研究综述与讨论   总被引:1,自引:0,他引:1  
有关金沙江形成演化研究的历史已有百年之久,近十年来更是地学界研究热点之一,产出成果颇为丰硕。该文在对一个多世纪以来有关金沙江研究成果分析基础上,勾绘出金沙江石鼓-宜宾段上新世以来的河谷形成演化过程,基本观点为:全新世之前该区存在数条并列南流水系;上新世末-早更新世初,湖泊广泛发育;早更新世中后期,金沙江经丽江-鹤庆,于金江街附近汇入昔格达古湖;早更新世末期,昔格达古湖被切穿泄空,金沙江下游袭夺连通;中更新晚期,石鼓以南的东西向隆起使金沙江南流受阻,被动袭夺至水洛河,并于三江口与下游川江连通,至此形成真正具有现代意义的金沙江。  相似文献   

2.
Sediment data from the Yichang area in the Jianghan Basin of Hubei Province in China suggest deposition in a lacustrine environment prior to 0.75 Ma, B.P., followed by incision of the Yangtze River. The earliest Quaternary Yunchi Formation accumulated in an alluvial fan to fan-delta environment. The subsequent Shanxiyao Formation was deposited in an environment that changed from fan-delta to lacustrine. The distribution of sedimentary facies suggests the presence of a lake in the Yichang area prior to 0.75 Ma, B.P. The lack of sediments contemporaneous with the Yunchi and Shanxiyao Formations in other areas of the Jianghan Basin, suggests that this ancient lake was limited to the Yichang area. This lake predates the present Yangtze River in the Yichang area and the Jianghan basin. Provenance studies of gravels in the Yunchi and Shanxiyao Formations, as well as gravels in terraces and the channel of the Yangtze River indicate a variety of sediment sources, but suggest that no material from the area west of the Three Gorges had been carried into the Yichang area prior to 0.75 Ma, B.P. The Yangtze River cut through Three Gorges area only after 0.75 Ma, B.P.  相似文献   

3.
淮河作为中国7大江河之一,有关其形成时代的研究相对匮乏且存在较大的争议。论文通过梳理淮河流域内已有的研究工作,综合层状地貌面和沉积地层记录探讨了淮河不同河段的形成时代。新生代期间,淮河流域内的水系曾经历2次较大的调整,分别发生在古近纪末和上新世末。古近纪和新近纪期间,淮河流域曾广泛发育湖泊沉积,以河湖相沉积环境为主。而第四纪期间,流域内古地理环境逐渐过渡为以河流相沉积环境为主。现代淮河河湖体系的形成发生在早至中更新世,其后经历不断的演变至今。构造活动和气候变化是驱动淮河流域水系演变的主因。上新世末至早更新世初的青藏运动导致了淮河流域内新近纪水文体系的解体,而晚新生代以来气候的转冷可能是湖泊萎缩、河流作用增强的诱因。  相似文献   

4.
Pollen analysis of 5 wells drilled to bedrock in the Great Salt Lake, Utah, USA provide a record vegetation change over the last ca 13.5 Ma. Over 440 pollen samples have been counted. The longest record presented is for the mid-lake Bridge Well. Close-interval (3–10 Ka) sampling is presented for the upper Indian Cove well. Chronologic control is provided by identification volcanic tephra and by K/Ar, Ar/Ar, and fission-track dates. Ash determinations are based on electron microprobe analyses of iron, calcium, and other elements compared to Neogene ash data at the University of Utah. Sedimentation begins 38 Ma, with good pollen preservation is sediments younger than 13.5 Ma, and no obvious gaps in sedimentation after 6 Ma.The upland vegetation is desert from the late Miocene onward, with Sarcobatus and Ephedra pollen dominance during the late Miocene (<5 Ma). Chenopodiaceae-Amaranthus, and Artemisia gain dominance during the Pliocene (5–2.5 Ma) and early Pleistocene. Pinus and Artemisia sharply increase in the late Pleistocene (0.75 Ma). The pollen of 'Tertiary exotics' (elm, hickory, Ostrya-Carpinus) is rare, but persists into the Pleistocene. Major vegetation – climatic events occur 3.7 and 2.5 Ma. Increased pollen concentration and sedimentation rate after 310 Ka are attributed to the diversion of the Bear River into the Bonneville Basin.Glacial-interglacial cycles appear as alternations of Chenopodiaceae-Amaranthus (interglacial) vs Artemisia (glacial) during the Pliocene and early Pleistocene, and of Cupressaceae, Sarcobatus, and Gramineae (interglacial) vs Picea, Abies, and Pseudotsuga (glacial) during the late Pleistocene. Pluvial cycles are separated by interpluvial peaks in percentages of wetground and aquatic types. Six interpluvials are indicated during the last 759 Ka, with pluvial cycles of ca 100 Ka cyclicity back to 1.5 Ma.  相似文献   

5.
P. Wang  H. Zheng  L. Chen  J. Chen  Y. Xu  X. Wei  X. Yao 《Basin Research》2014,26(4):505-522
Within the interior of the Yangtze Craton, the dome‐like Huangling anticline exposes ca. 1000 km2 of Archaean basement and Neoproterozoic granitoid rocks in the Three Gorges region, providing a natural laboratory for studying the mechanism of intracontinental exhumation. Cretaceous shortening of the Qinling Orogen and Cenozoic reorganization of the Yangtze River have been considered by previous thermochronology studies to account for the two‐phase exhumation of the Huangling anticline. However, little is known about when and how the batholithic rocks were exposed to the surface. To fully reveal the exhumation history of the Huangling anticline, we focus on the Cenozoic sedimentary record in the western Jianghan Basin, downstream of the Three Gorges, and examined spatio‐temporal changes in sedimentation dynamic and provenance on the basis of sedimentary facies, palaeocurrents and clast compositions, as well as zircon U‐Pb geochronology. Our results indicate continuous unroofing of the Huangling anticline since the Eocene and provide a solid evidence for first exposure of the Huangling batholith during the Neogene. Cenozoic exhumation of the Huangling anticline is synchronous with incision of the Three Gorges, indicating a mechanism of intracontinental exhumation due to Yangtze River reorganization through which the Middle Yangtze River was progressively captured by the Lower Yangtze River with locally increased erosion rates in the Three Gorges.  相似文献   

6.
Geomorphic, lithologhic, and stratigraphic field studies as well as pollen data and mineralogical study have been used to propose Pliocene and Pleistocene paleogeographic reconstructions of the El’gygytgyn meteorite crater area. The moment of impact is recorded above the early Pliocene hill denudation plain as a “chaotic horizon” consisting of fragments of impactite rocks. This chaotic horizon lies between layers of late Pliocene alluvial sediments. During the second half of the late Pliocene, the region was tectonically active, when the Anadyr lowland was uplifted causing alluvial sediments to accumulate in the basins to the south of the crater. Regional climatic cooling, which supported the spread of tundra and the formation of permafrost is characteristically to late Pliocene. The 35–40 m high terrace that roughly follows the 530 m contour interval along the Enmyvaam River formed during the middle Pleistocene. This terrace represents the maximum lake level. Erosion and incision of the upper Enmyvaam River increased due to another wave of uplift. Additionally, El’gygytgyn Lake discharge increased causing lake level to begin to drop in the Middle Pleistocene. Cooling continued, which led to the development of herb-dominated arctic tundra. middle and late Pleistocene glaciations did not reach the El’gygytgyn lake region. The 9–11 m high lacustrine terrace was formed around the lake during the late Pleistocene and the 2–3 m high lacustrine terrace formed later during the Holocene. During the last 5000 years, the lake level has continued to drop as the modern coastline developed. This is the third in a series of eleven papers published in this special issue dedicated to initial studies of El’gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

7.
There is a set of Late Cenozoic sediments in the Kunlun Pass area, Tibetan Plateau, China. Paleomagnetic, ESR and TL dating suggest that they date from the Late Pliocene to the Early Pleistocene. Analyses of stratigraphy, sedimentary characteristic, and evolution of the fauna and flora indicate that, from the Pliocene to the early Quaternary (about 5–1.1 Ma BP), there was a relatively warm and humid environment, and a paleolake occurred around the Kunlun Pass. The elevation of the Kunlun Pass area was no more than 1500 m, and only one low topographic divide existed between the Qaidam Basin and the Kunlun Pass Basin. The geomorphic pattern in the Kunlun Pass area was influenced by the Kunlun–Yellow River Tectonic Movement 1.1–0.6 Ma BP. The Wangkun Glaciation (0.7–0.5 Ma) is the maximum Quaternary glaciation in the Pass and in other areas of the Plateau. During the glaciation, the area of the glaciers was 3–5 times larger than that of the present glacier in the Pass area. There was no Xidatan Valley that time. The extreme geomorphic changes in the Kunlun Pass area reflect an abrupt uplift of the Tibet Plateau during the Early and Middle Pleistocene. This uplift of the Plateau has significance on both the Plateau itself and the surrounding area.  相似文献   

8.
[Correction added after online publication 3 August 2010 ‐ ‘prelate’ has been changed to ‘pre‐late’ throughout the text]. Using apatite fission track and (U‐Th‐Sm)/He thermochronology, we report the low‐temperature thermal history of the Mesozoic Micang Shan Foreland Basin system, central China. This system, comprising the Hannan Dome hinterland, the northern Sichuan Foreland Basin and the intermediate frontal thrust belt (FB), shares a common boundary with three major tectonic terrains – Mesozoic Qinling‐Dabie Orogen, Mesozoic Sichuan Foreland Basin and Cenozoic elevated Tibetan Plateau. Results show: (1) a relatively rapid pre‐late Cretaceous cooling episode in the Hannan Dome; (2) a mid‐Cenozoic cooling phase (ca. 50°C at ca. 30 ± 5 Ma) within the northern Sichuan Basin; and (3) possible late Cenozoic cooling (ca. 25°C at ca. 16 ± 4 Ma) within the Hannan Dome‐FB, a phase which has also been reported previously from adjacent regions. The pre‐late Cretaceous cooling episode in the Hannan Dome is attributed to coeval tectonism in nearby regions. Mid‐Cenozoic cooling in the northern Sichuan Basin can possibly be attributed to either one of or a combination of shortening of the basin, onset of the Asian monsoon and drainage adjustment of the Yangtze River system, all of which are related to growth of the Tibetan Plateau. Possible late Cenozoic cooling in the hinterland and nearby regions is also probably related to the northeastward growth of the Tibetan Plateau. However, previous studies suggest a northeastward propagation for onset of cooling from the eastern Tibetan Plateau to western Qinling in response to northeastward lower crust flow from the central Tibetan Plateau. The timing of apparent late Cenozoic cooling in the Hannan Dome hinterland, at an intermediate locality, is not consistent with this trend, and supports a previous model suggesting northeastern growth of the Tibetan Plateau through reactivation of WE trending strike‐slip faults.  相似文献   

9.
The continuous Cenozoic strata in the Xining Basin record the growth and evolution of the northeastern Qinghai–Tibetan Plateau. Here, the mechanisms and evolution of the Xining Basin during the Cenozoic were investigated by studying the sedimentary facies of 22 Cenozoic sections across the basin and detrital zircon U‐Pb ages of three Cenozoic sections located in the eastern, central and western basin, respectively. In the Eocene (ca. 50–44 Ma), the India‐Eurasia Collision affected the northeastern Qinghai–Tibetan Plateau. The Central Qilian Block rotated clockwise by ca. 24° to form the Xining Basin. The Triassic flysch sediments surrounding the basin were the primary sources of sediment. Between ca. 44–40 Ma, the basin enlarged and deepened, and sedimentation was dominated by saline lake sediments. Between ca. 40–25.5 Ma, the Xining Basin began to shrink and dry, resulting in the deposition of saline pan and saline mudflat sediments in the basin. After ca. 20 Ma, the Laji Shan to the south of the Xining Basin was uplifted due to the northward compression of the Guide Basin to the south. Clasts that eroded from this range dominated the sediments as the basin evolved from a lacustrine environment into a fluvial system. The Xining Basin was an extensional basin in the Early Cenozoic, but changed into a compressive one during the Late Cenozoic, it was not a foreland basin either to the Kunlun Shan or to the western Qinling Shan in the whole Cenozoic. The formation and deformation of the Xining Basin are the direct responses of the India‐Eurasia Collision and the growth of the Qinghai‐Tibetan Plateau.  相似文献   

10.
基于前期研究工作成果和外部环境变化因素分析,探讨了青弋江发育原因及其与长江贯通的关系。研究表明:① 昆黄运动可能在长江中下游地区产生了区域构造响应,导致研究区断层被激活而发生了较大幅度的断块抬升运动,进而为青弋江发育提供了下切驱动力,驱动了青弋江发育;② 东亚夏季风在约1.3 Ma和约0.9 Ma发生的2次显著阶段性减弱事件,引起区域降水量显著增加,进而为青弋江发育提供了下切媒介和持续水流,控制了青弋江发育年代;③ 青弋江发育与长江贯通可能都是昆黄运动区域构造响应与东亚夏季风强度阶段性减弱共同作用的结果,并且长江贯通后所形成的新局部侵蚀基准面也可能促进了青弋江发育,因此青弋江发育年代在一定程度上能反映长江贯通年代。  相似文献   

11.
The Chinese Tian Shan is one of the most actively growing orogenic ranges in Central Asia. The Late Miocene‐Quaternary landscape evolution of northern Tian Shan has been significantly driven by the interaction between tectonic deformations and climate change, further modulated by the erosion of the upstream bedrocks and deposition into the downstream basins. In this study, only the accessible Kuitun River drainage basin in northern Tian Shan was considered, and detrital zircon geochronology and heavy minerals were analyzed to investigate the signature of the driving forces for Miocene sedimentation in northern Tian Shan. This study first confirmed a previously recognized tectonic uplift at ca. 7.0 Ma and further revealed that the basin sediments were mainly derived from the present glacier‐covered ridge‐crest regions during 3.3–2.5 Ma. It is suggested Late‐Pliocene to Early Pleistocene sedimentation was likely a response to the onset of the northern hemispheric glaciation. Although complicated, this study highlights that the tectonic‐climatic interaction during the Late Cenozoic orogenesis can be discriminated in the northern Chinese Tian Shan.  相似文献   

12.
Based on field observations, the author proposes a new understanding on the formation of the first bend of the Yangtze River. The relationship between the formation of the first bend of the Yangtze River and Eocene magmatic activity is expounded, suggesting that the first bend of the Yangtze River is the result from choking of the strong magmatic activity in Eocene. As a result, the upstream became a natural reservoir, whose riverside between Mt. Yulong and Mt. Haba was burst, guiding Jinshajiang River running eastward. At the same time, the drastic uplift of the Qinghai-Tibet Plateau led to the deep dissection of the river cut down the channel, resulting in the formation of the Tiger Leaping Gorge. The magnitude of uplift in the study area (located in the eastern of the Tibetan Plateau) is calculated. Taking Mt. Yulong as a base, the magnitude of lift is 3,300 m from Eocene to Pliocene, adding 700 m since Pleistocene, totaling up to 4,000 m or so.  相似文献   

13.
ZENG Pusheng 《地理学报》2002,12(3):305-312
Based on field observations, the author proposes a new understanding on the formation of the first bend of the Yangtze River. The relationship between the formation of the first bend of the Yangtze River and Eocene magmatic activity is expounded, suggesting that the first bend of the Yangtze River is the result from choking of the strong magmatic activity in Eocene. As a result, the upstream became a natural reservoir, whose riverside between Mt. Yulong and Mt. Haba was burst, guiding Jinshajiang River running eastward. At the same time, the drastic uplift of the Qinghai-Tibet Plateau led to the deep dissection of the river cut down the channel, resulting in the formation of the Tiger Leaping Gorge. The magnitude of uplift in the study area (located in the eastern of the Tibetan Plateau) is calculated. Taking Mt. Yulong as a base, the magnitude of lift is 3,300 m from Eocene to Pliocene, adding 700 m since Pleistocene, totaling up to 4,000 m or so.  相似文献   

14.
The Sichuan Basin and the Songpan‐Ganze terrane, separated by the Longmen Shan fold‐and‐thrust belt (the eastern margin of the Tibetan Plateau), are two main Triassic depositional centres, south of the Qinling‐Dabie orogen. During the Middle–Late Triassic closure of the Paleo‐Tethys Ocean, the Sichuan Basin region, located at the western margin of the Yangtze Block, transitioned from a passive continental margin into a foreland basin. In the meantime, the Songpan‐Granze terrane evolved from a marine turbidite basin into a fold‐and‐thrust belt. To understand if and how the regional sediment routing system adjusted to these tectonic changes, we monitored sediment provenance primarily by using detrital zircon U‐Pb analyses of representative stratigraphic samples from the south‐western edge of the Sichuan Basin. Integration of the results with paleocurrent, sandstone petrology and published detrital zircon data from other parts of the basin identified a marked change in provenance. Early–Middle Triassic samples were dominated by Neoproterozoic (~700–900 Ma) zircons sourced mainly from the northern Kangdian basement, whereas Late Triassic sandstones that contain a more diverse range of zircon ages sourced from the Qinling, Longmen Shan and Songpan‐Ganze terrane. This change reflects a major drainage adjustment in response to the Late Triassic closure of the Paleo‐Tethys Ocean and significant shortening in the Longmen Shan thrust belt and the eastern Songpan‐Ganze terrane. Furthermore, by Late Triassic time, the uplifted northern Kangdian basement had subsided. Considering the eastward paleocurrent and depocenter geometry of the Upper Triassic deposits, subsidence of the northern Kangdian basement probably resulted from eastward shortening and loading of the Songpan‐Ganze terrane over the western margin of the Yangtze Block in response to the Late Triassic collision among Yangtze Block, Yidun arc and Qiangtang terrane along the Ganze‐Litang and Jinshajiang sutures.  相似文献   

15.
An acoustic Doppler current profiler is used to characterize the river velocity against the morphology of the Yangtze River from Chonqing to the sea. High flow velocities occur in the Three Gorges section and lower velocities in the middle and lower reaches of the river. This is largely due to the change in river pattern from a high gradient deeply-cut valley to a flat fluvial plain. Flow velocities fluctuate in the middle Yangtze due to the presence of meander bends of different length. There are numerous smaller velocity fluctuations in the lower Yangtze channel that reflect multichannel pattern with numerous sand bars and a river morphology affected by bedrock outcrops. Water depths of 40–100 m occur in the Three Gorges valley but decrease to 15–40 m in the middle and lower Yangtze. At the Gezhou Reservoir, 30 km downstream of the Three Gorges damsite velocity drops to low (< 1.0 m s− 1) 20 km reach. A second low velocity (< 0.5 m s− 1) zone, about 20 km in length, is located in the lower Yangtze near the coast probably due to the tidal influence. The results from this research will serve as a datum for evaluating changes to the river once the Three Gorges dam is completed in 2009.  相似文献   

16.
The complex relationship between the Yangtze River and Poyang Lake controls the exchange of water and sediment between the two, and exerts effects on water resources, flooding, shipping, and the ecological environment. The theory of energy is applied in this paper to investigate the physical mechanisms that determine the nature of the contact between the Yangtze River and Poyang Lake and to establish an energy difference (Fe) index to quantify the interactions between the two systems. Data show that Fe values for this interaction have increased since the 1950s, indicating a weakening in the river effect while the lake effect has been enhanced. Enclosure of the Three Gorges Reservoir (TGR) has also significantly influenced the relationship between the river and the lake by further reducing the impacts of the Yangtze River. The river effect also increases slightly during the dry season, and decreases significantly at the end of the flooding period, while interactions between the two to some extent influence the development of droughts and floods within the lake area. Data show that when the flow of the five rivers within this area is significant and a blocking effect due to the Yangtze River is also clearly apparent, floods occur easily; in contrast, when the opposite is true and the flow of the five rivers is small, and the Yangtze River can accommodate the flow, droughts occur frequently. Construction and enclosure of the TGR also means that the lake area is prone to droughts during September and October.  相似文献   

17.
The North Sakhalin Basin in the western Sea of Okhotsk has been the main site of sedimentation from the Amur River since the Early Miocene. In this article, we present regional seismic reflection data and a Neogene–Recent sediment budget to constrain the evolution of the basin and its sedimentary fill, and consider the implications for sediment flux from the Amur River, in particular testing models of continental‐scale Neogene drainage capture. The Amur‐derived basin‐fill history can be divided into five distinct stages: the first Amur‐derived sediments (>21–16.5 Ma) were deposited during a period of transtension along the Sakhalin‐Hokkaido Shear Zone, with moderately high sediment flux to the basin (71 Mt year?1). The second stage sequence (16.5–10.4 Ma) was deposited following the cessation of transtension, and was characterised by a significant reduction in sediment flux (24 Mt year?1) and widespread retrogradation of deltaic sediments. The third (10.4–5.3 Ma) and fourth (5.3–2.5 Ma) stages were characterised by progradation of deltaic sediments and an associated increase in sediment flux (48–60 Mt year?1) to the basin. Significant uplift associated with regional transpression started during this time in southeastern Sakhalin, but the north‐eastward propagating strain did not reach the NE shelf of Sakhalin until the Pleistocene (<2.5 Ma). This uplift event, still ongoing today, resulted in recycling of older deltaic sediments from the island of Sakhalin, and contributed to a substantially increased total sediment flux to the adjacent basinal areas (165 Mt year?1). Adjusted rates to discount these local erosional products (117 Mt year?1) imply an Amur catchment‐wide increase in denudation rates during the Late Pliocene–Pleistocene; however, this was likely a result of global climatic and eustatic effects, combined with tectonic processes within the Amur catchment and possibly a smaller drainage capture event by the Sungari tributary, rather than continental‐scale drainage capture involving the entire upper Amur catchment.  相似文献   

18.
本文基于长江中游江汉—洞庭盆地18个钻孔岩性、沉积特征及年代数据,结合研究区考古遗址点时空分布特征,恢复研究区全新世以来水文环境演变过程,并探讨了区域水文环境演变的成因机制及其与人类活动的关系。结果表明,受东海海面上升和泥沙淤积等因素影响,距今11.5—5.5 ka,长江中游地区河湖水位呈上升趋势,随着新石器文化的发展及稻作农业活动的增加,人类文化聚落自山前平原地带逐渐向盆地平原中部扩展;距今5.5—4.0 ka,长江中游河湖水位有所下降,新石器晚期的屈家岭—石家河文化迅速发展,聚落数量增多,平原腹地聚落比例增加;距今4.0 ka前后,河湖水位再次有所上升,洪泛过程加剧,可能是石家河文化快速衰落的主要原因。  相似文献   

19.
张建  胡小飞  耿豪鹏  陈殿宝  潘保田 《地理科学》2016,36(10):1595-1604
对黑河中游酒东盆地大洼井(DWJ)和新开九队(XKJD)两个钻孔以及现代黑河干流和支流进行重矿物采集与分析。分析结果发现:DWJ钻孔下部(140~69.7 m)沉积物重矿物特征同摆浪河与马营河的相似性较高;DWJ钻孔上部(69.7~0 m)和XKJD钻孔(65.6~0 m)的沉积物重矿物特征与现代黑河干流、梨园河和山丹河两个支流比较吻合。重矿物组合特征的变化指示了沉积物的源区发生明显变化。DWJ钻孔上部与下部的岩性和沉积相均发生明显变化,重矿物组合特征所反映的源区变化指示了黑河中游水系发生重要调整。对比钻孔岩芯和走廊区第四系岩相剖面特征,推测此次黑河中游沉积环境与水系格局发生变化的时间大致为早-中更新世之交。  相似文献   

20.
选择位于长江三角洲南部区域的3个钻孔CSB4、CSB6和CSB8,开展环境磁学方面的研究,以揭示该地区晚更新世以来沉积物记录的显著气候事件。结果显示:3个钻孔都存在明显的S300低值区域,其变化规律为当S300为低值时,磁化率、ARM和SIRM的值较低,而IRMAF80mT/SIRM和ARM/SIRM的比值相对较高,表明磁性矿物浓度降低、粒度变细。同时S300低值区域沉积物以黄色粉砂质黏土为主,含铁锰质结核。IRM获得曲线定量分析结果揭示:沉积物中赤铁矿等高矫顽力组分的含量相对增加,指示长江三角洲区域3次显著的干旱气候事件。在磁性地层及其AMS 14C、光释光测年基础上,推断3次干旱事件发生的时间分别为163―121 ka B.P.(事件I)、57―42 ka B.P.(事件II)和14―10 ka B.P.(事件III),对应海平面相对较低时期,季风减弱,降水减少,气候干旱,形成以氧化作用为主的环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号