首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Borehole temperatures in the central and south Urals were analysed for the past ground surface temperature (GST) signal. 31 highquality temperature logs were selected for this purpose and inverted with algorithms based on the generalised least squares theory. The signal to noise ratio was improved by averaging the results of individual borehole inversions. No distinct regional trends were found in the studied region except for some indications of more pronounced warming in the south. The mean GST history (GSTH) was characterised by cooling down to –0.6 °C in the 18th century and subsequent warming to 0.5 °C above the longterm mean at the beginning of this century, and to 1 – 1.5 °C by 1980. The stability of the mean GSTH was tested in dependence on the number of holes used for the averaging. It showed that any subset of 15 holes yielded a GSTH similar to that obtained from the whole set. A surface air temperature (SAT) time series comprising the period 1832 – 1989 was combined from 17 meteorological records. Its least squares warming rate of 1.1 °C per 100 years is somewhat higher than that of the GST (0.7 – 0.8°C/100 years) in the same period.  相似文献   

2.
Stratospheric warming effects on the tropical mesospheric temperature field   总被引:1,自引:0,他引:1  
Temperature observations at 20–90 km height and 5–15°N during the winter of 1992–1993, 1993–1994 and 2003–2004, from the Wind Imaging Interferometer (WINDII) and Microwave Limb Sounder (MLS) experiments on the Upper Atmosphere Research Satellite (UARS) satellite and the Sounding the Atmosphere using Broadband Emission Radiometry (SABER) experiment on the Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics (TIMED) satellite are analyzed together with MF radar winds and UK Meteorological Office (UKMO) assimilated fields. Mesospheric cooling is observed at the time of stratospheric warming at the tropics correlative with stratospheric warming events at middle and high latitudes. Planetary waves m=1 with periods of 4–5, 6–8, 10 and 12–18 days are found to dominate the period. Westward 7- and 16-day waves at the tropics appear enhanced by stationary planetary waves during sudden stratospheric warming events.  相似文献   

3.
Ground Surface Temperature (GST) history in Poland was derived from the inversion of temperature-depth profiles in over 20 wells. Temperature histories for the period 1500 A.D. through 1977 A.D. agree well with the instrumental record of the surface-air temperature available for the last two centuries. A statistical correlation of the reconstructed histories (from the well temperature data) with the instrumental record (air temperature) from the homogeneous Warsaw series is high (>0.8). Functional space inversion (FSI) of the temperature data with depth shows that beginning in the early 19th century, temperatures warmed by 0.9 ± 0.1°C following a long period of colder climate before. The last number could be a minimal as higher warming was calculated using a simple model based on surface temperature for the observational period (homogenized Warsaw surface temperature series, Lorenc, 2000) and POM (pre-observational mean; Harris and Chapman, 1998) of –1.53oC below the 1951–1980 mean temperature level.  相似文献   

4.
Summary The results of geothermal research carried out in South Siberia (West-Siberian and Siberian Platforms, Altai-Sayan folded area and the Baikalian arched uplift zone) were employed to calculate the Earth's crustal temperatures. It is shown that temperature is a function of the heat flow value. The maps of the surface heat flow and the temperatures at the Moho discontinuity are presented and characteristic temperature-depth profiles were compiled for specific tectonic areas. The West-Siberian and Siberian Platforms, as well as the Altai-Sayan folded region are characterized by rather low heat flow, 42–50mW m –2 (1.0–1.2 µcal/cm 2 s), and low temperatures at the Moho boundary.400–500 °C. The thermal conditions in the area of Lake Baikal are extreme, the heat flow reaches here100–142 mW m –2 (2.4–3.4 µcal/cm 2 s), and the temperature at the crust's bottom may exceed1000 °C. The Moho-surface according to our calculations is nonisothermal.  相似文献   

5.
The knowledge of the present-day underground temperatures may be important in the assessments of the past climate change. The method of inversion of the temperature-depth records into the ground surface temperature history is briefly introduced by showing an example of synthetic data and illustrated by a review of existing results obtained from the inversion of temperature logs measured in holes in the Czech Republic. Underground temperatures observed in holes of the depth of at least 1000–1500 m seem to confirm the preinstrumental climate pattern of the past several thousand years. Most of shallower temperature records (500–800 m) revealed general warming of climate followed the Little Ice Age of the 17–18th centuries and a pronounced increase of the soil temperatures by at least 1 K since the beginning of this century.  相似文献   

6.
The results of a hydroacoustic monitoring experiment in the Kelut Crater lake, Indonesia, prior to its 1990 eruption, are presented, with the benefit of hindsight. Indeed, the underwater noise levels in three widely separated frequency bands, together with the lake water temperature, was radio-transmitted and almost continuously recorded from a period of quiescence of the volcano till the onset of its 10 February 1990, eruption, which destroyed the monitoring buoy. The comparative analysis of the noise variations in the three bands, together with seismic and temperature data, have shed light on the mechanisms underlying the pre-eruptive activity. The three acoustic levels had shown conspicuous, yet distinctive, changes prior to the eruption. Acoustic level in the low-frequency (1–50 Hz) band, which increased one year before the resumption of seismic activity and the lake warming up, is interpreted as the result of boiling at depth. The source of high-acoustic level in the audiometric (500–5000 Hz) range is clearly the bubbling of volcanic gases, occurring as a strong convective column in the middle of the lake. From the variations of this audiometric level, we have estimated that the degassing rate in the lake increased by a hundred-fold during the pre-eruptive period. Variations of ultrasonic (20–100 kHz) frequency acoustic level seem to be related with pressure and thermal changes within the hydrothermal system and its rock matrix beneath the lake. In conclusion, this experiment demonstrates the potential of hydroacoustic monitoring as an early warning system at crater lake volcanoes.  相似文献   

7.
Since the discovery of a striking correlation between 1-2-2-2-1 filtered solar cycle lengths and the 11-year running average of northern hemisphere land air temperatures, there have been widespread speculations as to whether these findings would rule out any significant contributions to global warming from the enhanced concentrations of greenhouse gases. The solar hypothesis (as we shall term this assumption) claims that solar activity causes a significant component of the global mean temperature to vary in phase opposite to the filtered solar cycle lengths. In an earlier article we have demonstrated that for data covering the period 1860–1980 the solar hypothesis does not rule out any significant contribution from man-made greenhouse gases and sulphate aerosols. The present analysis goes a step further. We analyse the period 1579–1987 and find that the solar hypothesis—instead of contradicting—appears to support the assumption of a significant warming due to human activities. We have tentatively corrected the historical northern hemisphere land air temperature anomalies by removing the assumed effects of human activities. These are represented by northern hemisphere land air temperature anomalies calculated as the contributions from man-made greenhouse gases and sulphate aerosols by using an upwelling diffusion-energy balance model similar to the model of Wigley and Raper, 1993 employed in the Second Assessment Report of The Intergovernmental Panel on Climate Change (IPCC). It turns out that the agreement of the filtered solar cycle lengths with the corrected temperature anomalies is substantially better than with the historical anomalies, with the mean square deviation reduced by 36% for a climate sensitivity of 2.5°C, the central value of the IPCC assessment, and by 43% for the best-fit value of 1.7°C. Therefore our findings support a total reversal of the common assumption that a verification of the solar hypothesis would challenge the IPCC assessment of man-made global warming.  相似文献   

8.
The present study reports long-term variabilities and trends in the middle atmospheric temperature (March 1998–2008) derived from Rayleigh backscattered signals received by the Nd:YAG lidar system at Gadanki (13.5°N, 79.2°E). The monthly mean temperature compositely averaged for the years 1998–2008 shows maximum temperature of 270 K in the months of March–April and September at altitudes between 45 and 55 km. The altitude profile of trend coefficients estimated from the 10 years of temperature observations using regression analysis shows that there exists cooling at the rate with 1σ uncertainty of 0.12±0.1 K/year in the lower stratospheric altitudes (35–42 km) and 0.2±0.08 K/year at altitudes near 55–60 km. The trend is nearly zero (no significant cooling or warming) at altitudes 40–55 km. The regression analysis reveals the significant ENSO response in the lower stratosphere (1 K/SOI) and also in mesosphere (0.6 K/SOI). The solar cycle response shows negative maxima of 1.5 K/100F10.7 units at altitudes 36 km, 41 km and 1 K/100F10.7 units at 57 km. The response is positive at mesospheric altitude near 67 km (1.3 K/100F10.7 units). The amplitudes and phases of semiannual, annual and quasi-biennial oscillations are estimated using least squares method. The semiannual oscillation shows larger amplitudes at altitudes near 35, 45, 62 and 74 km whereas the annual oscillation peaks at 70 km. The quasi-biennial oscillations show larger amplitudes below 35 km and above 70 km. The phase profiles of semiannual and annual oscillations show downward propagation.  相似文献   

9.
In this paper we show evidences of the fractal nature of the 3-D inhomogeneities in the lithosphere from the study of seismic wave scattering and discuss the relation between the fractal dimension of the 3-D inhomogeneities and that of the fault surfaces. Two methods are introduced to measure the inhomogeneity spectrum of a random medium: 1. the coda excitation spectrum method, and 2. the method of measuring the frequency dependence of scattering attenuation. The fractal dimension can be obtained from the inhomogeneity spectrum of the medium. The coda excitation method is applied to the Hindu-Kush data. Based on the observed coda excitation spectra (for frequencies 1–25 Hz) and the past observations on the frequency dependence of scattering attenuation, we infer that the lithospheric inhomogeneities are multiple scaled and can be modeled as a bandlimited fractal random medium (BLFRM) with an outer scale of about 1 km. The fractal dimension of the 3-D inhomogeneities isD 3=31/2–32/3, which corresponds to a scaling exponent (Hurst number)H=1/2–1/3. The corresponding 1-D inhomogeneity spectra obey the power law with a powerp=2H+1=2–5/3. The intersection between the earth surface and the isostrength surface of the 3-D inhomogeneities will have fractal dimensionD 1=1.5–1.67. If we consider the earthquake fault surface as developed from the isosurface of the 3-D inhomogeneities and smoothed by the rupture dynamics, the fractal dimension of the fault trace on the surface must be smaller thanD 1, in agreement with recent measurements of fractal dimension along the San Andreas fault.  相似文献   

10.
We propose a thermal model of the subducting Ionian microplate. The slab sinks in an isothermal mantle, and for the boundary conditions we take into account the relation between the maximum depth of seismicity and the thermal parameter Lth of the slab, which is a product of the age of the subducted lithosphere and the vertical component of the convergence rate. The surface heat-flux dataset of the Ionian Sea is reviewed, and a convective geotherm is calculated in its undeformed part for a surface heat flux of 42 mW m–2, an adiabatic gradient of 0.6 mK m–1, a mantle kinematic viscosity of 1017 m2 s–1 and an asthenosphere potential temperature of 1300°C. The calculated temperature-depth distribution compared to the mantle melting temperature indicates the decoupling limit between lithosphere and asthenosphere occurs at a depth of 105 km and a temperature of 1260°C. A 70–km thick mechanical boundary layer is found. By considering that the maximum depth of the seismic events within the slab is 600 km, a Lth of 4725 km is inferred. For a subduction rate equal to the spreading rate, the corresponding assimilation and cooling times of the microplate are about 7 and 90 Myr, respectively. The thermal model assumes that the mantle flow above the slab is parallel and equal to the subducting plate velocity of 6 cm yr–1, and ignores the heat conduction down the slab dip. The critical temperature, above which the subduced lithosphere cannot sustain the stress necessary to produce seismicity, is determined from the thermal conditions governing the rheology of the plate. The minimum potential temperature at the depth of the deepest earthquake in the slab is 730°C.  相似文献   

11.
— Well temperature logs from 61 sites located in discontinuous and continuous permafrost regions of northern Canada are analyzed. The method of functional space inversion (FSI) is applied to the set of precise temperature logs from wells located between 60 ° and 82 °N. There is strong evidence of extensive ground surface temperature (GST) warming beginning in the late 18th century and lasting until the 20th century. This was preceded by a lengthy period of cooling. The approximate average increase of the surface temperature of Canadian Arctic, based on all individual GST histories, is > 1.3 °C for the last 200 years. Simultaneous inversion of all well temperature data suggests an even higher warming (approximately 2 °C). There has been no strong south-to-north gradient in the ground warming magnitude when northern Canadian data are compared with eastern and central Canadian data south of 60 °N which also shows warming close to 2 °C. In Alaska, warming of some 2 °C has been restricted mainly to the 20th century. In general, however, a high warming magnitude is common for most of Canada and Alaska for the previous century. The averaged GST history (GSTH) for the Canadian Arctic is calibrated with and compares visually with a variety of recently published regional and hemispheric proxy climate reconstructions. These show that GST warming derived from well temperature logs is generally higher than one shown by other proxy (mainly tree-ring reconstructions).Received April, 2003  相似文献   

12.
The Global Warming Debate: A Review of the State of Science   总被引:2,自引:0,他引:2  
A review of the present status of the global warming science is presented in this paper. The term global warming is now popularly used to refer to the recent reported increase in the mean surface temperature of the earth; this increase being attributed to increasing human activity and in particular to the increased concentration of greenhouse gases (carbon dioxide, methane and nitrous oxide) in the atmosphere. Since the mid to late 1980s there has been an intense and often emotional debate on this topic. The various climate change reports (1996, 2001) prepared by the IPCC (Intergovernmental Panel on Climate Change), have provided the scientific framework that ultimately led to the Kyoto protocol on the reduction of greenhouse gas emissions (particularly carbon dioxide) due to the burning of fossil fuels. Numerous peer-reviewed studies reported in recent literature have attempted to verify several of the projections on climate change that have been detailed by the IPCC reports.The global warming debate as presented by the media usually focuses on the increasing mean temperature of the earth, associated extreme weather events and future climate projections of increasing frequency of extreme weather events worldwide. In reality, the climate change issue is considerably more complex than an increase in the earth’s mean temperature and in extreme weather events. Several recent studies have questioned many of the projections of climate change made by the IPCC reports and at present there is an emerging dissenting view of the global warming science which is at odds with the IPCC view of the cause and consequence of global warming. Our review suggests that the dissenting view offered by the skeptics or opponents of global warming appears substantially more credible than the supporting view put forth by the proponents of global warming. Further, the projections of future climate change over the next fifty to one hundred years is based on insufficiently verified climate models and are therefore not considered reliable at this point in time.  相似文献   

13.
Latent heat release associated with tropical deep convective activity is investigated as a source for migrating (sun-synchronous) diurnal and semidiurnal tidal oscillations in the 80–150-km height region. Satellite-based cloud brightness temperature measurements made between 1988 and 1994 and averaged into 3–h bins are used to determine the annual- and longitude-average local-time distribution of rainfall rate, and hence latent heating, between ±40° latitude. Regional average rainfall rates are shown to be in good agreement with climatological values derived from surface rain gauge data. A global linearized wave model is used to estimate the corresponding atmospheric perturbations in the mesosphere/lower thermosphere (80–150 km) resulting from upward-propagating tidal components excited by the latent heating. The annual-average migrating diurnal and semidiurnal components achieve velocity and temperature amplitudes of order 10–20 m s–1 and 5–10 K, respectively, which represent substantial contributions to the dynamics of the region. The latent heat forcing also shifts the phase (local solar time of maximum) of the semidiurnal surface pressure oscillation from 0912 to 0936 h, much closer to the observed value of 0944 h.  相似文献   

14.
Summary The real area of contact has been determined, and measurements of the maximum and average surface temperatures generated during frictional sliding along precut surfaces in Tennessee sand-stone have been made, through the use of thermodyes. Triaxial tests have been made at 50 MPa confining pressure and constant displacement rates of 10–2 to 10–6 cm/sec, and displacements up to 0.4 om. At 0.2 cm of stable sliding, the maximum temperature decreases with decreasing nominal displacement rate from between 1150° to 1175°C at 10–2 cm/sec to between 75° to 115°C at 10–3 cm/sec. The average temperature of the surface is between 75 and 115°C at 10–2 cm/sec, but shows no rise from room temperature at 10–3 cm/sec. At 0.4 cm displacement, and in the stick-slip mode, as the nominal displacement rate decreases from 10–3 to 10–6 cm/sec, the maximum temperature decreases from between 1120° to 1150°C to between 1040° to 1065°C. The average surface temperature is 115° to 135°C at displacement rates from 2.6×10–3 to 10–4 cm/sec.With a decrease in the displacement rate from 10–2 to 10–6 cm/sec, the real area of contact increases from about 5 to 14 percent of the apparent area; the avergge area of asperity contact increases from 2.5 to 7.5×10–4 cm2. Although fracture is the dominate mechanism during stick-up thermal softening and creep may also contribute to the unstable sliding process.  相似文献   

15.
High quality temperature measurements have been made to depths of 30 to 220 m at 42 sites in 62 observational hydrogeological wells in Alberta. The temperature profiles commonly show near-surface inversions with a minimum temperature at depths of 30 to 50 m. Thermal modelling suggests a surface temperature history with warming reaching 2°C over the past 30 to 60 years. Recent climate warming evident from the analysis of the air temperature data in the region seems to provide at least a partial explanation of the increased ground temperatures. A sudden increase of the surface ground temperature caused by land clearing may be the other explanation, although modelling of such a sudden increase can only explain the observed temperature-depth data if the onset of such warming is 20–30 years old, which is in disagreement with the history of land development in the studied area. The effect of near-surface inversions of the temperature profiles also has been observed in the forested areas. The above support the climate based effect. The superposition of the climatic effect and man-made activity effect upon the ground warming is a very complicated process calling for considerably more research.  相似文献   

16.
17.
The TOPEX/POSEIDON (T/P) satellite altimeter data from January 1, 1993 to January 3, 2001 (cycles 11–305) was used for investigating the long-term variations of the geoidal geopotential W 0 and the geopotential scale factor R 0 = GM÷W 0 (GM is the adopted geocentric gravitational constant). The mean values over the whole period covered are W 0 = (62 636 856.161 ± 0.002) m2s-2, R 0 = (6 363 672.5448 ± 0.0002) m. The actual accuracy is limited by the altimeter calibration error (2–3 cm) and it is conservatively estimated to be about ± 0.5 m2s-2 (± 5 cm). The differences between the yearly mean sea surface (MSS) levels came out as follows: 1993–1994: –(1.2 ± 0.7) mm, 1994–1995: (0.5 ± 0.7) mm, 1995–1996: (0.5 ± 0.7) mm, 1996–1997: (0.1 ± 0.7) mm, 1997–1998: –(0.5 ± 0.7) mm, 1998–1999: (0.0 ± 0.7) mm and 1999–2000: (0.6 ± 0.7) mm. The corresponding rate of change in the MSS level (or R 0) during the whole period of 1993–2000 is (0.02 ± 0.07) mm÷y. The value W 0 was found to be quite stable, it depends only on the adopted GM, and the volume enclosed by surface W = W 0. W 0 can also uniquely define the reference (geoidal) surface that is required for a number of applications, including World Height System and General Relativity in precise time keeping and time definitions, that is why W 0 is considered to be suitable for adoption as a primary astrogeodetic parameter. Furthermore, W 0 provides a scale parameter for the Earth that is independent of the tidal reference system. After adopting a value for W 0, the semi-major axis a of the Earth's general ellipsoid can easily be derived. However, an a priori condition should be posed first. Two conditions have been examined, namely an ellipsoid with the corresponding geopotential which fits best W 0 in the least squares sense and an ellipsoid which has the global geopotential average equal to W 0. It is demonstrated that both a-values are practically equal to the value obtained by the Pizzetti's theory of the level ellipsoid: a = (6 378 136.7 ± 0.05) m.  相似文献   

18.
We have studied the effects on the ozone concentration and surface temperature, of perturbations in the atmospheric content of nitrous oxide, methane, carbon dioxide and chlorofluorocarbons (CFC). The sensitivity study has been carried out with a radiative-convective-photochemical model. The doubling of carbon dioxide concentration has the effect of warming the troposphere and cooling the stratosphere. As a result of this cooling, the change of ozone columnar density produced by 10 ppb of chlorine amount to 9.3% as compared to –10.9% obtained without temperature feedback. Perturbation in nitrous oxide correspond to an increase in NO x of the stratosphere with consequent ozone reduction while doubling the methane concentration correspond to a slight increase in columnar density. The effect of the increased methane concentration in the stratosphere contributes to reduce the effect of CFC due to the enhanced formation of HCl. The perturbation of these two minor constituents appreciably increase the greenhouse effect to 2.30 from 1.67°, obtained when carbon dioxide alone is considered.  相似文献   

19.
Surface partial pressure of CO2 (pCO2), temperature, salinity, nutrients, and chlorophyll a were measured in the East China Sea (ECS; 31°30′–34°00′N to 124°00′–127°30′E) in August 2003 (summer), May 2004 (spring), October 2004 (early fall), and November 2005 (fall). The warm and saline Tsushima Warm Current was observed in the eastern part of the survey area during four cruises, and relatively low salinity waters due to outflow from the Changjiang (Yangtze River) were observed over the western part of the survey area. Surface pCO2 ranged from 236 to 445 μatm in spring and summer, and from 326 to 517 μatm in fall. Large pCO2 (values >400 μatm) occurred in the western part of the study area in spring and fall, and in the eastern part in summer. A positive linear correlation existed between surface pCO2 and temperature in the eastern part of the study area, where the Tsushima Warm Current dominates; this correlation suggests that temperature is the major factor controlling surface pCO2 distribution in that area. In the western part of the study area, however, the main controlling factor is different and seasonally complex. There is large transport in this region of Changjiang Diluted Water in summer, causing low salinity and low pCO2 values. The relationship between surface pCO2 and water stability suggests that the amount of mixing and/or upwelling of CO2-rich water might be the important process controlling surface pCO2 levels during spring and fall in this shallow region. Sea–air CO2 flux, based on the application of a Wanninkhof [1992. Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research 97, 7373–7382] formula for gas transfer velocity and a set of monthly averaged satellite wind data, were −5.04±1.59, −2.52±1.81, 1.71±2.87, and 0.39±0.18 mmol m−2 d−1 in spring, summer, early fall, and fall, respectively, in the northern ECS. The ocean in this study area is therefore a carbon sink in spring and summer, but a weak source or in equilibrium with the atmosphere in fall. If the winter flux value is assumed to have been the mean of autumnal and vernal values, then the northern ECS absorbs about 0.013 Pg C annually. That result suggests that the northern ECS is a net sink for atmospheric CO2, a result consistent with previous studies.  相似文献   

20.
The influence of global warming in Earth rotation speed   总被引:1,自引:0,他引:1  
The tendency of the atmospheric angular momentum (AAM) is investigated using a 49-year set of monthly AAM data for the period January 1949–December 1997. This data set is constructed with zonal wind values from the reanalyses of NCEP/NCAR, used in conjunction with a variety of operationally produced AAM time series with different independent sources and lengths over 1976–1997. In all the analyzed AAM series the linear trend is found to be positive. Since the angular momentum of the atmosphere–earth system is conserved this corresponds to a net loss of angular momentum by the solid earth, therefore decreasing the Earth rotation speed and increasing the length of day (LOD). The AAM rise is significant to the budget of angular momentum of the global atmosphere–earth system; its value in milliseconds/century (ms/cy) is +0.56 ms/cy, corresponding to one-third of the estimated increase in LOD (+1.7 ms/cy). The major contribution to this secular trend in AAM comes from the equatorial Tropopause. This is consistent with results from a previous study using a simplified aqua-planet model to investigate the AAM variations due to near equatorial warming conditions. During the same time interval, 1949–1997, the global marine + land-surface tempera- ture increases by about 0.79 °C/cy, showing a linear correspondence between surface temperature increase and global AAM of about 0.07 ms per 0.1 °C. These results imply that atmospheric angular momentum may be used as an independent index of the global atmosphere’s dynamical response to the greenhouse forcing, and as such, the length of day may be used as an indirect indicator of global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号