首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This paper presents preliminary results from the application of a transfer‐function rainfall–runoff model to ephemeral streams in Mediterranean Spain. Flow simulations have been conducted for two small catchments (Carraixet and Poyo basins), located in close proximity to one another yet with significantly different geological characteristics. Analysis of flow simulations for a number of high‐flow events has revealed the dominant influence of the rainfall on the catchment response, particularly for high‐rainfall events. Particular success has been attained modelling the highest magnitude events in both catchments and for all events in the faster responding (Poyo) catchment. In order to investigate the viability of the model for forecasting floods in ungauged catchments, additional investigations have been conducted by calibrating the model for one catchment (donor catchment) and then applying it to another (receptor catchment). The results indicate that this can be successful when either the donor catchment is a fast response catchment or when the model is calibrated using a high‐magnitude event in the donor catchment, providing that the modelled receptor catchment event is of a lower magnitude. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
The use of distributed data for model calibration is becoming more popular in the advent of the availability of spatially distributed observations. Hydrological model calibration has traditionally been carried out using single objective optimisation and only recently has been extended to a multi-objective optimisation domain. By formulating the calibration problem with several objectives, each objective relating to a set of observations, the parameter sets can be constrained more effectively. However, many previous multi-objective calibration studies do not consider individual observations or catchment responses separately, but instead utilises some form of aggregation of objectives. This paper proposes a multi-objective calibration approach that can efficiently handle many objectives using both clustering and preference ordered ranking. The algorithm is applied to calibrate the MIKE SHE distributed hydrologic model and tested on the Karup catchment in Denmark. The results indicate that the preferred solutions selected using the proposed algorithm are good compromise solutions and the parameter values are well defined. Clustering with Kohonen mapping was able to reduce the number of objective functions from 18 to 5. Calibration using the standard deviation of groundwater level residuals enabled us to identify a group of wells that may not be simulated properly, thus highlighting potential problems with the model parameterisation.  相似文献   

3.
4.
SD模型在洱海流域营养物削减策略研究中的应用   总被引:1,自引:1,他引:0  
针对洱海富营养化问题,本文在深入分析洱海流域营养物输运转移特征的基础上,应用VENSIM-DSS构建了洱海流域的社会、经济、技术、环境SD耦合模型.模型由7个子系统组成,确定了一套适用于洱海流域的耦合模型特征参数.对入湖TN、TP进行追根溯源,模拟结果表明洱海流域入湖TN主要来源于种植业子系统、畜牧业子系统、生活污水子系统和干湿沉降子系统,以上4大子系统占入湖TN的88%;入湖TP主要来源于种植业子系统、畜牧业子系统、生活污水子系统和水土流失子系统,以上4大子系统占入湖TP的89%.以此为基础通过设置4种不同的营养物削减情景,模拟未来10年入湖TN、TP的变化,并通过构建的政策评价子系统和DILLON模型定量评价不同削减方案的可行性,提出最优洱海流域营养物削减方案.  相似文献   

5.
A rising exposure to flood risk is a predicted consequence of increased development in vulnerable areas and an increase in the frequency of extreme weather events due to climate change. In the face of this challenge, a continued reliance on engineered at‐a‐point flood defences is seen as both unrealistic and undesirable. The contribution of ‘soft engineering’ solutions (e.g. riparian forests, wood in rivers) to integrated, catchment scale flood risk management has been demonstrated at small scales but not larger ones. In this study we use reduced complexity hydrological modelling to analyse the effects of land use and channel changes resulting from river restoration upon flood flows at the catchment scale. Results show short sections of river‐floodplain restoration using engineered logjams, typical of many current restoration schemes, have highly variable impacts on catchment‐scale flood peak magnitude and so need to be used with caution as a flood management solution. Forested floodplains have a more general impact upon flood hydrology, with areas in the middle and upper catchment tending to show reductions in peak magnitude at the catchment outflow. The most promising restoration scenarios for flood risk management are for riparian forest restoration at the sub‐catchment scale, representing 20–40% of the total catchment area, where reductions in peak magnitude of up to 19% are observed through de‐synchronization of the timings of sub‐catchment flood waves. Sub‐catchment floodplain forest restoration over 10–15% of total catchment area can lead to reductions in peak magnitude of 6% at 25 years post‐restoration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A mass balance model of the main Pb stores and fluxes for a typical organic‐rich upland catchment in the Peak District, UK, has been produced. The model, based on the Howden reservoir catchment, reveals that the majority of Pb in the catchment is stored within the soil (approximately 8·63 t km?2). Soil Pb levels are extremely high and can only be explained as the result of centuries of atmospheric Pb deposition from surrounding urban–industrial conurbations, and mining and smelting activity within the Peak District National Park. The atmospheric Pb flux onto the Howden catchment is approximately 107 kg a?1. The aquatic Pb flux is estimated at between 29·9 and 71·7 kg a?1; thus, at present, catchment soils are acting as a sink for Pb pollution. The Howden reservoir acts as a secondary store for Pb eroded and leached from catchment soils, with approximately 80% re‐deposited in its sediments. It is estimated that 2·3% of the catchment soil Pb pool has been retained in the reservoir sediments over its 91 year lifespan. Although the catchment is currently acting as a Pb sink, the rate of change in the soil Pb pool is very small. Future change in climate or deposition chemistry could, however, transform catchment soils into a significant source of Pb to the aquatic environment and water supply. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Lack of availability of historical data series is one of the major hindrances in hydrological modelling. Regionalization of hydrological model parameters is one of the solutions to obtain the parameters for ungauged basins. Recently, lots of methodologies have been developed. They can be categorized as model calibration then fitting regression between model parameters and catchments characteristics, using some kind of transfer function. The aim of this study was to compare different regionalization methods as well as to look how the spatial resolution affects regionalization. In this study, a modified Lipschitz and monotony condition was used for regionalization. To identify the effect of the model resolution, the parameters of a distributed and semi‐distributed version of the Hydrologiska Byråns Vattenbalansavdelning (HBV) model were regionalized. The study was conducted at the upper Neckar catchment of southwest Germany. It has been found that the combination of Lipschitz and monotony condition has performed reasonably. It has been seen that the distributed model structure has outperformed the semi‐distributed model structure. It shows under present data conditions that higher model resolution can describe processes of ungauged basins reasonably. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents an application of a long-term, large catchment-scale, water balance model developed to predict the effects of forest clearing in the south-west of Western Australia. The conceptual model simulates the basic daily water balance fluxes in forested catchments before and after clearing. The large catchment is divided into a number of sub-catchments (1–5 km2 in area), which are taken as the fundamental building blocks of the large catchment model. The responses of the individual subcatchments to rainfall and pan evaporation are conceptualized in terms of three inter-dependent subsurface stores A, B and F, which are considered to represent the moisture states of the subcatchments. Details of the subcatchment-scale water balance model have been presented earlier in Part 1 of this series of papers. The response of any subcatchment is a function of its local moisture state, as measured by the local values of the stores. The variations of the initial values of the stores among the subcatchments are described in the large catchment model through simple, linear equations involving a number of similarity indices representing topography, mean annual rainfall and level of forest clearing. The model is applied to the Conjurunup catchment, a medium-sized (39·6 km2) catchment in the south-west of Western Australia. The catchment has been heterogeneously (in space and time) cleared for bauxite mining and subsequently rehabilitated. For this application, the catchment is divided into 11 subcatchments. The model parameters are estimated by calibration, by comparing observed and predicted runoff values, over a 18 year period, for the large catchment and two of the subcatchments. Excellent fits are obtained.  相似文献   

9.
10.
Abstract

Hydrological models are often used for studying the hydrological effects of climate change; however, the stability of model performance and parameter values under changing climate conditions has seldom been evaluated and compared. In this study, three widely-used rainfall–runoff models, namely the SimHYD model, the HBV model and the Xin’anjiang model, are evaluated on two catchments subject to changing climate conditions. Evaluation is carried out with respect to the stability in their performance and parameter values in different calibration periods. The results show that (a) stability of model performance and parameter values depends on model structure as well as the climate of catchments, and the models with higher performance scores are more stable in changing conditions; (b) all the tested models perform better on a humid catchment than on an arid catchment; (c) parameter values are also more stable on a humid catchment than on an arid catchment; and (d) the differences in stability among models are somewhat larger in terms of model efficiency than in model parameter values.  相似文献   

11.
SWAT模型在斯里兰卡河流径流预测中的运用   总被引:1,自引:0,他引:1  
本文运用SWAT模型和新安江模型对斯里兰卡卡鲁河流域上游地区日径流进行了预测.卡鲁河是斯里兰卡的第二大河,由于流域的降雨量很大,上游地区河流沿峡谷流下,中下游平原地区河床平坦.卡鲁河流域的洪水变的很正常.应用SWAT模型来对卡鲁河的日径流量进行预测,并同应用新安江模型所得到的结果做对比.研究表明,新安江模型要比SWAT (分布式水文模型)模型在卡鲁河日径流量预测上稍微好一些.实际上,或许数据质量不高或不恰当是部分原因,因为SWAT的输出成果严格取决于其输入的数据质量.此外,在斯里兰卡,许多人的日常用水是靠井水.当把流域看作一个整体,通常都是一个很大的范围,那样的话就不可能详尽的记录所有各个小规模的水利用,例如:小灌溉、小规模的家畜管理和工业水利用.这些水利用累积起来或许就很可观.这些数据的缺失对分布式水文模型在水平衡的应用有着独特的影响.但是概念水文模型(如新安江模型)可以根据实际情况在校正中调节它的参数,因为这些参数并没有实质的物理含义.因此,在流域特征和模型输入数据有限或不完整的情况下,概念水文模型比分布式水文模型更具优势.  相似文献   

12.
A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers. The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.  相似文献   

13.
W. T. Sloan  J. Ewen 《水文研究》1999,13(6):823-846
A method has been developed to simulate the long‐term migration of radionuclides in the near‐surface of a river catchment, following their release from a deep underground repository for radioactive waste. Previous (30‐year) simulations, conducted using the SHETRAN physically based modelling system, showed that long‐term (many decades) simulations are required to allow the system to reach steady state. Physically based, distributed models, such as SHETRAN, tend to be too computationally expensive for this task. Traditional lumped catchment‐scale models, on the other hand, do not give sufficiently detailed spatially distributed results. An intermediate approach to modelling has therefore been developed which allows flow and transport processes to be simulated with the spatial resolution normally associated with distributed models, whilst being computationally efficient.The approach involves constructing a lumped model in which the catchment is represented by a number of conceptual water storage compartments. The flow rates to and from these compartments are prescribed by functions that summarize the results from physically based distributed models run for a range of characteristic flow regimes. The physically based models used were, SHETRAN for the subsurface compartments, a particle tracking model for overland flow and an analytical model for channel routing. One important advantage of the method used in constructing the lumped model is that it makes down scaling possible, in the sense that fine‐scale information on the distributed hydrological regime, as simulated by the physically based distributed models, can be inferred from the variables in the lumped model that describe the hydrology at the catchment scale. A 250‐year flow simulation has been run and the down scaling process used to infer a 250‐year time‐series of three‐dimensional velocity fields for the subsurface of the catchment. This series was then used to drive a particle tracking simulation of contaminant migration. The concentration and spatial distribution of contaminants simulated by this model for the first 30 years were in close agreement with SHETRAN results. The remaining 220 years highlighted the fact that some of the most important transport pathways to the surface carry contaminants only very slowly so both the magnitude and spatial distribution of concentration in surface soils are not apparent over the shorter SHETRAN simulations. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

14.
15.
The terms ‘downward’ and ‘upward’ (synonymous with ‘top‐down’ and ‘bottom‐up’ respectively) are sometimes used when describing methods for developing hydrological models. A downward approach is used here to develop a lumped catchment‐scale model for subsurface stormflow at the 0·94 km2 Slapton Wood catchment. During the development, as few assumptions as possible are made about the behaviour of subsurface stormflow at the catchment scale, and no assumptions are made about its behaviour at smaller scales. (In an upward approach, in contrast, the modelling would be based on assumptions about, and data for, the behaviour at smaller scales, such as the hillslope, plot, and point scales.) The model has a single store with a relatively simple relationship between discharge and storage, based on equations describing hysteretic patterns seen in a graph of discharge against storage. Double‐peaked hydrographs have been observed at the catchment outlet. Rainfall on the channel and infiltration‐excess and saturation‐excess runoff give a rapid response, and shallow subsurface stormflow gives a delayed response. Hydrographs are successfully simulated for the large delayed responses observed in 1971–1980 and 1989–1991, then a lumped model for the rapid response is coupled to the lumped hysteretic model and some double‐peaked hydrographs simulated. A physical interpretation is developed for the lumped hysteretic model, making use of information on patterns of perched saturation observed in 1982 on a hillslope at the Slapton Wood catchment. Downward and upward approaches are complementary, and the most robust way to develop and improve lumped catchment models is to iterate between downward and upward steps. Possible next steps are described. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Over recent decades, population expansion, deforestation, land conversion, urbanisation, intense fisheries and industrialisation have produced massive changes in the Laguna de Bay catchment, Philippines. The resulting problems include rapid siltation of the lake, eutrophication, inputs of toxics, flooding problems and loss of biodiversity. Rational and systematic resolution of conflicting water use and water allocation interests is now urgently needed in order to ensure sustainable use of the water resources. With respect to the competing and conflicting pressures on the water resources, the Laguna Lake Development Authority (LLDA) needs to achieve comprehensive management and development of the area. In view of these problems and needs, the Government of the Netherlands was funding a two-year project entitled 'Sustainable Development of the Laguna de Bay Environment'.A comprehensive tool has been developed to support decision-making at catchment level. This consists of an ArcView GIS-database linked to a state-of-the-art modelling suite, including hydrological and waste load models for the catchment area and a three-dimensional hydrodynamic and water quality model (Delft3D) linked to a habitat evaluation module for the lake. In addition, MS Office based tools to support a stakeholder analysis and financial and economic assessments have been developed. The project also focused on technical studies relating to dredging, drinking water supply and infrastructure works. These aimed to produce technically and economically feasible solutions to water quantity and quality problems. The paper also presents the findings of a study on the development of polder islands in the Laguna de Bay, addressing the water quantity and quality problems and focusing on the application of the decision support system.  相似文献   

18.
19.
M. Nouh 《水文研究》1990,4(2):103-120
Data on performance of a geomorphologic rainfall-runoff model in simulating observed flash flood hydrographs in 32 arid catchments have been analysed. The catchments, which are located in the southwest region of Saudi Arabia, vary in their size, slope of land, and characteristics of soils, and are in zones of different rainstorm characteristics. The sensitivity of the model accuracy with various catchment and rainfall characteristics has been investigated. Size, followed by rate of infiltration and slope of land, are the most effective catchment characteristics affecting the accuracy. In addition, the accuracy varies with spatial and temporal rainfall variation, total rainfall depth, and length of the dry period between two successive rainstorms over catchment. It is sensitive to temporal rainfall variation more than spatial rainfall variation, and to the dry period more than total rainfall depth. Generally, the model did not display an accuracy approaching that of the observations, especially in simulating peak flowrates in large size infiltrating catchments having high temporal rainstorm variation. Guidelines on the best use of the model in arid catchments were proposed.  相似文献   

20.
新安江模型河网汇流参数Cs对洪峰模拟影响较大,目前Cs的确定需依赖于大量的历史数据,因此Cs的确定成为无资料地区和资料匮乏区水文模型应用中亟需解决的棘手问题.本文基于参数的物理意义,通过自相似河网结构的假定,构建Cs与河网形态、流域下垫面特征的相关联系,提出基于河链蓄量方程的Cs估算方法,对半干旱、半湿润和湿润地区等不同水文气象分区的11个流域的Cs值进行推算并代入新安江模型中进行模拟,经比较发现,11个流域子流域Cs计算均值与新安江模型率定结果相近,说明该Cs计算方法是合理的.选取陈河、屯溪两个典型流域研究单元流域属性对Cs的影响,由结果可以看出Cs与流域面积、河链数、河宽呈正相关,与单元流域距离出口的远近呈负相关,这表明流域分块后各单元流域Cs值不一致,而新安江模型中采用相同Cs值对不同单元进行调节必然会造成汇流计算的误差.为进一步提高该方法在无资料地区的应用效果,将新安江模型汇流模块修改为每个单元使用对应的Cs计算值进行滞后演算,以陈河和屯溪流域为例采用新安江模型Cs率定值、Cs计算均值以及修改后新安江模型3种不同方案进行模拟比较,从模拟结果可以得出,修改后的模型具有明显优势,将模型参数与下垫面条件建立了联系,模型物理机制提高且参数的独立性增强,对于新安江模型在无资料地区的应用具有重要的指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号