首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lower Palaeozoic fluvial systems tend to be more sand-prone than those of later eras and the nature of coastal environments less certain. Field studies are presented that characterize the fluvial to marine transition over a distance of 80 km, in the Lower Cambrian of the Cotentin Peninsula, northern France. The sedimentary rocks are divided into six facies associations which represent deposition in proximal fluvial, distal fluvial, delta plain, delta front, pro-delta and offshore carbonate bank environments. The basin fill is sandstone-dominated and subdivided into three stratigraphic intervals. A 200 to 300 m thick basal interval contains very coarse-grained fluvial sandstones deposited during a relative sea level lowstand. An overlying interval, 250 to 1500 m thick, is a facies mosaic. Fluvial strata in the north-west pass laterally south-east into deltaic and shallow marine pro-delta sediments. The delta front deposits show repetitively stacked, upward-coarsening parasequences, 8 to 10 m thick, which reflect the repeated progradation of lobate, fluvially-dominated deltas onto a shallow marine shelf. The deltas formed following marine transgression and accumulated during a period of gradually rising relative sea level. An upper unit, 130 m thick, containing offshore stromatolitic and oolitic limestones, caps the study interval and represents deposition during a relative sea level highstand. The fluvial and delta distributary channel sandstones of the middle unit contain <1% mudstone. The cohesionless substrate determined that deltaic distributaries were predominantly braided in character and subject to common bifurcations which resulted in an ordered diminution of channel size and competence in a seaward direction. Terminal distributary channels show evidence of migratory levées and mouth-bars and consistently delivered fine to medium-grained sand to the delta front. The study highlights an example of pre-vegetation deltaic sedimentation that was hydraulically organized and predictable, despite being fed by braided fluvial systems with high levels of peak discharge.  相似文献   

2.
This study presents an example of locating Cambrian–Ordovician boundary in the lower Paleozoic carbonate succession in Korea using carbon isotope stratigraphy. The Yeongweol Unit of the lower Paleozoic Joseon Supergroup comprises the Upper Cambrian Wagok Formation and the Lower Ordovician Mungok Formation in the Cambrian–Ordovician transition interval. Conventionally, the boundary was placed at the lithostratigraphic boundary between the two formations. This study reveals that the boundary is positioned in the basal part of the Mungok Formation based on the carbon isotope stratigraphy coupled with biostratigraphic information of conodont and trilobite faunas. The δ13C curve of the Lower Ordovician Mungok Formation shows a similar trend to that of the coeval stratigraphic interval of Argentine Precordillera (Buggisch et al., 2003), suggesting that the δ13C curve of the Mungok Formation reflects the Early Ordovician global carbon cycle.  相似文献   

3.
Early Paleozoic paleomagnetic data from NW Argentina and Northern Chile have shown large systematic rotations within two domains: one composed of the Western Puna that yields very large (up to 80°) counter-clockwise rotations, and the other formed by the Famatina Ranges and the Eastern Puna that shows (~40°) clockwise rotations around vertical axes. In several locations, lack of significant rotations in younger rocks constrains this kinematic pattern to have occurred during the Paleozoic. Previous tectonic models have explained these rotations as indicative of rigid-body rotations of large para-autochthonous crustal blocks or terranes. A different but simple tectonic model that accounts for this pattern is presented in which rotations are associated to crustal shortening and tectonic escape due to the collision of the allochthonous terrane of Precordillera in the Late Ordovician. This collision should have generated dextral shear zones in the back arc region of the convergent SW Gondwana margin, where systematic domino-like clockwise rotations of small crustal blocks accommodate crustal shortening. The Western Puna block, bordering the Precordillera terrane to the north, might have rotated counterclockwise as an independent microplate due to tectonic escape processes, in a fashion similar to the present-day relationship between the Anatolia block and the Arabian microplate.  相似文献   

4.
The different types of deep-buried dissolution process in the Member 5 of Ordovician Majiagou Formation in the southern Ordos Basin and its influence on the reservoir properties are studied in this paper. It shows that three types of mechanisms include organic acid fluid, hydrothermal fluid and TSR are identified through studies of core observation, thin section analysis, inclusion temperature, trace elements and rare earth elements. It is found that the dissolution of organic acid fluid causes the stratified dissolution pores, film-like asphaltene and ring-like asphaltene, while hydrothermal fluid causes the non-selective dissolution pores without petrofabric, veins of pyrites, massive pyrites and the association of hypothermal minerals. Four occurrence models of dissolution include, (1) the deep-buried dissolution of low-temperature hydrothermal fluid occurs in Zhiluo Period of Middle Jurassic; (2) the deep-buried dissolution of organic acid fluid started from the late Middle Jurassic followed by the first hydrocarbon injection; (3) the deep-buried dissolution of middle-high temperature hydrothermal fluid occurred in the Dongsheng Period of Early Cretaceous; (4) TSR occurred at the end of Early Cretaceous with the second larger hydrocarbon injection. Both organic acid fluid and hydrothermal fluid can improve the porosity and permeability of reservoir, but the hydrothermal fluid is more effective than that of organic acid fluid.  相似文献   

5.
Understanding the pace and drivers of marine-based ice-sheet retreat relies upon the integration of numerical ice-sheet models with observations from contemporary polar ice sheets and well-constrained palaeo-glaciological reconstructions. This paper provides a reconstruction of the retreat of the last British–Irish Ice Sheet (BIIS) from the Atlantic shelf west of Ireland during and following the Last Glacial Maximum (LGM). It uses marine-geophysical data and sediment cores dated by radiocarbon, combined with terrestrial cosmogenic nuclide and optically stimulated luminescence dating of onshore ice-marginal landforms, to reconstruct the timing and rate of ice-sheet retreat from the continental shelf and across the adjoining coastline of Ireland, thus including the switch from a marine- to a terrestrially-based ice-sheet margin. Seafloor bathymetric data in the form of moraines and grounding-zone wedges on the continental shelf record an extensive ice sheet west of Ireland during the LGM which advanced to the outer shelf. This interpretation is supported by the presence of dated subglacial tills and overridden glacimarine sediments from across the Porcupine Bank, a westwards extension of the Irish continental shelf. The ice sheet was grounded on the outer shelf at ~26.8 ka cal bp with initial retreat underway by 25.9 ka cal bp. Retreat was not a continuous process but was punctuated by marginal oscillations until ~24.3 ka cal bp. The ice sheet thereafter retreated to the mid-shelf where it formed a large grounding-zone complex at ~23.7 ka cal bp. This retreat occurred in a glacimarine environment. The Aran Islands on the inner continental shelf were ice-free by ~19.5 ka bp and the ice sheet had become largely terrestrially based by 17.3 ka bp. This suggests that the Aran Islands acted to stabilize and slow overall ice-sheet retreat once the BIIS margin had reached the inner shelf. Our results constrain the timing of initial retreat of the BIIS from the outer shelf west of Ireland to the period of minimum global eustatic sea level. Initial retreat was driven, at least in part, by glacio-isostatically induced, high relative sea level. Net rates of ice-sheet retreat across the shelf were slow (62–19 m a−1) and reduced (8 m a−1) as the ice sheet vacated the inner shelf and moved onshore. A picture therefore emerges of an extensive BIIS on the Atlantic shelf west of Ireland, in which early, oscillatory retreat was followed by slow episodic retreat which decelerated further as the ice margin became terrestrially based. More broadly, this demonstrates the importance of localized controls, in particular bed topography, on modulating the retreat of marine-based sectors of ice sheets.  相似文献   

6.
The paper discusses the evolution of Stromatoporoidea in the epicontinental sedimentary basin of the Siberian Platform and Taimyr during the Ordovician and Silurian. Specimens of the oldest genus, Priscastroma, were found in the middle of Middle Ordovician sediments. This genus is represented by the species P. gemina Khrom., which has two forms, A and B. Tracing the emergence of new genera over time, we identified two distinct branches in stromatoporoid evolution.The ancestor of the first branch is P. gemina f. A, which gave rise to the genus Cystostroma. The latter is the ancestor of two subbranches with predominant horizontal skeletal elements. The subbranches differ only in tissue microstructure. The genera Stromatocerium, Dermatostroma, and Aulacera display dense fibrous microstructure, whereas the genus Rosenella and its descendants display dense microstructure. The genus Lophiostroma, with a lamellar–fibrous tissue, may be a dead branch of evolution.The ancestor of the second branch is P. gemina f. B, which gave rise to the genus Labechia and its descendants. This branch has a dense tissue, with predominant vertical skeletal elements.Ordovician stromatoporoids from Siberia were compared with those from other basins of the world. Comparison shows that all the Ordovician genera from the epicontinental basin of the Siberian Platform and Taimyr originated here. Thus, this basin was one of the centers of stromatoporoid origin.  相似文献   

7.
《Precambrian Research》1986,33(4):255-264
The Rooiberg (Felsite) Group is a rare example of a conformable succession that apparently spans the period of evolution of an oxygen-rich atmosphere. This conclusion is reached indirectly from a review of the Proterozoic stratigraphy of South Africa, and directly from a consideration of the Rooiberg itself. The atmospheric transition coincides with the stratigraphic interval between the dark silicic lavas and associated grey volcaniclastics of the Damwal Formation, and the overlying red rhyodacites and intercalated red-bed sedimentary rocks of the Selonsrivier Formation. Radiometric age measurements indicate that this transition occurred after 2224 ± 21 Ma but before 2090 ± 40 Ma.  相似文献   

8.
Many geological and geochemical changes are recorded on Earth between 3 and 2 Ga.Among the more important of these are the following:(1)increasing proportion of basalts with"arc-like"mantle sources;(2)an increasing abundance of basalts derived from enriched(EM)and depleted(DM)mantle sources;(3)onset of a Great Thermal Divergence in the mantle;(4)a decrease in degree of melting of the mantle;(5)beginning of large lateral plate motions;(6)appearance of eclogite inclusions in diamonds;(7)appearance and rapid increase in frequency of collisional orogens;(8)rapid increase in the production rate of continental crust as recorded by zircon age peaks;(9)appearance of ophiolites in the geologic record,and(10)appearance of global LIP(large igneous province)events some of which correlate with global zircon age peaks.All of these changes may be tied directly or indirectly to cooling of Earth's mantle and corresponding changes in convective style and the strength of the lithosphere,and they may record the gradual onset and propagation of plate tectonics around the planet.To further understand the changes that occurred between 3 and 2 Ga,it is necessary to compare rocks,rock associations,tectonics and geochemistry during and between zircon age peaks.Geochemistry of peak and inter-peak basalts and TTGs needs to be evaluated in terms of geodynamic models that predict the existence of an episodic thermal regime between stagnant-lid and plate tectonic regimes in early planetary evolution.  相似文献   

9.
《Sedimentary Geology》1999,123(1-2):63-80
On the Baltic platform a lower Llanvirn (Ordovician) iron oolite can be traced for a distance of 1200 km from Norway to the east of Lake Ladoga in Russia. This oolite is usually thin (seldom exceeding 0.5 m) and is dominated by goethite (limonite) type ooids. The easternmost part of the oolite, from Tallinn to Ladoga, is examined here. The oolitic limestone is intercalated with oolitic clay beds. The mineralogical, chemical and isotopic composition and other indicators point to volcanic ash being the source for the clay. Similarities in REE distribution patterns and immobile element contents between ooids and the oolitic clay suggest that the ooids were also formed from volcanic ash.  相似文献   

10.
John Wainwright 《Geoforum》2008,39(2):659-674
Landform-evolution models have typically failed to include human actions, or have done so only in a static, scenario-based way. This failure is despite the extensive empirical data that suggest rates of soil erosion are most sensitive to anthropic pressure. The CybErosion modelling framework overcomes this limitation by using an agent-based approach to simulating the dynamic interactions of people and their landscapes. The interactions simulated relate to basic processes of food acquisition (hunting, gathering and basic agriculture) in prehistoric communities. Simulations demonstrate the value of this approach in supporting the vulnerability of landform evolution to anthropic pressures, and demonstrate the limitations of existing models that ignore human and animal agency, which are likely to produce both quantitatively and qualitatively different results. The model is also a useful heuristic tool for understanding human-landscape interactions and for suggesting directions for future research. Despite the acknowledged limitations of agent-based approaches in simulating human populations, it is suggested that further research will be fruitful, especially if combined with a range of field evidence.  相似文献   

11.
The K-bentonite, black shale and flysch successions at the Ordovician–Silurian transition in South China have been the subject of comprehensive investigations relative to the probable accretion of the Yangtze Block and the questionable Cathaysia Block. First, the geochemical analyses of K-bentonites show that the parent magma originated in syn-collisional, volcanic-arc and within-plate tectonic settings, which produced mainly intermediate-to-felsic series magmas, associated with continuous collision and subduction of paleo-continental blocks/arcs. Further, the regional distribution of K-bentonite thickness indicates that voluminous explosive volcanism was located in the present southeastern shoreline provinces of China. Secondly, northwestwardly migrating, Ordovician–Silurian, transitional flysch successions, and the accompanying diachronous K-bentonite-bearing black-shale interval, as well as the related, overlying, shallowing-upward succession at the interior of the Yangtze Block, developed as an unconformity-bound sequence that mirrors foreland-basin tectophase cycles in the Appalachian basin. The above features suggest that the sequence accumulated in a similar foreland basin, which formed in response to adjacent deformational loading in a northwesterly migrating orogen located to the southeast. Geochemical and paleocurrent data from the turbiditic flyschoid sandstones also support these depositional settings. Accordingly, it seems that all criteria strongly support the presence of an Ordovician–Silurian, subduction-related orogen resulting from collision with a block to the southeast that must have been the original “Cathaysia Block” of Grabau and later workers. The K-bentonite, black-shale and flysch successions can be regarded as distal, foreland responses to the continuous northwestward collision and accretion of the Cathaysia Block to the Yangtze Block. Hence, we prefer to suggest that the suture zone with the sensu stricto Cathaysia Block probably developed along previously identified late Early Paleozoic suture relicts in the shoreline provinces of southeast China. On the other hand, although accretion of fragments with Cathaysian affinities to the Yangtze Block may have begun as early as Middle to Late Proterozoic time, the Ordovician–Silurian orogeny described above probably reflects the final phase of accretion between the two blocks. Moreover, when combined with similar peri-Iapetan orogenic events in other areas during the same period, this accretion event may have been part of a major stage of global tectonic reconstruction in the evolution of Gondwana.  相似文献   

12.
《Gondwana Research》2014,26(4):1644-1659
The formation of a series of intermountain basins is likely to indicate a geodynamic transition, especially in the case of such basins within the central South China Block (CSCB). Determining whether or not these numerous intermountain basins represent a division of the Cretaceous Pan-Yangtze Basin by exhumation of Xuefeng Mountains, is key to understanding the late Mesozoic to early Cenozoic tectonics of the South China Block (SCB). Here we present apatite fission track (AFT) data and time–temperature modeling in order to reconstruct the evolution history of the Pan-Yangtze Basin. Fourteen rock samples were taken from a NE–SW-trending mountain–basin system within the CSCB, including, from west to east, the Wuling Mountains (Wuling Shan), the south and north Mayang basins, the Xuefeng Mountains (Xuefeng Shan) and the Hengyang Basin. Cretaceous lacustrine sequences are well preserved in the south and north Mayang and Hengyang basins, and sporadically crop out in the Xuefeng Mountains, whereas Paleogene piedmont proluvial–lacustrine sequences are only found in the south Mayang and Hengyang basins. AFT results indicate that the Wuling and Xuefeng mountains underwent rapid denudation post-84 Ma, whereas the south and north Mayang basins were more slowly uplifted from 67 and 84 Ma, respectively. Following a quiescent period from 32 to 19 Ma, both the mountains and basins have been rapidly denuded since 19 Ma. Both the AFT data and sedimentary facies changes suggest that the Cretaceous deposits that cover the south–north Mayang and Hengyang basins through to the Xuefeng Mountains define the Cretaceous Pan-Yangtze Basin. Integrating our results with tectonic background for the SCB, we propose that rollback subduction of the paleo-Pacific Plate produced the Pan-Yangtze Basin, which was divided into the south–north Mayang and Hengyang basins by the abrupt uplift and exhumation of the Xuefeng Mountains from 84 Ma to present, apart from a period of tectonic inactivity from 32 to 19 Ma. This late Late Cretaceous to Paleogene denudation resulted from movement on the Ziluo strike–slip fault, which formed due to intra-continental compression most likely associated with the Eurasia–Indian plate subduction and collision. Sinistral transpression along the Ailao Shan–Red River Fault at 34–17 Ma probably transformed this compression to the extrusion of the Indochina Block, and produced the quiescent window period from 32 to 19 Ma for the mountain–basin system in the CSCB. Therefore, the initiation of exhumation of the Xuefeng Mountains at 84 Ma indicates a switch in tectonic regime from Cretaceous extension to late Late Cretaceous and Cenozoic compression.  相似文献   

13.
When Earth's tectonic style transitioned from stagnant lid (single plate) to the modern episode of plate tectonics is important but unresolved, and all lines of evidence should be considered, including the climate record. The transition should have disturbed the oceans and atmosphere by redistributing continents, increasing explosive arc volcanism, stimulating mantle plumes and disrupting climate equilibrium established by the previous balance of silicate‐weathering greenhouse gas feedbacks. Formation of subduction zones would redistribute mass sufficiently to cause true polar wander if the subducted slabs were added in the upper mantle at intermediate to high latitudes. The Neoproterozoic Snowball Earth climate crisis may reflect this transition. The transition to plate tectonics is compatible with nearly all proposed geodynamic and oceanographic triggers for Neoproterozoic Snowball Earth events, and could also have contributed to biological triggers. Only extraterrestrial triggers cannot be reconciled with the hypothesis that the Neoproterozoic climate crisis was caused by a prolonged (200–250 m.y.) transition to plate tectonics.  相似文献   

14.
15.
Spectral monitoring of the yellow hypergiant ρ Cas with the by 6-m telescope of the Special Astrophysical Observatory with a spectral resolution of R ≥ 60 000 has led to the detection of new features in the kinematic state of its extended atmosphere following the ejection of matter in 2013. Significant changes in the profile of the Hα line were detected: the line had a doubled core for the first time in a 2014 spectrum, an inverse P Cygni profile on February 13, 2017, and the profile was again doubled on August 6, 2017 and September 5, 2017, but was strongly shifted toward longer wavelengths, indicating a rapid infall of matter. Splitting of the profiles of strong, low-excitation absorption lines into three components was first detected in 2017. There is no correlation between the evolution of the profiles of Hα and the splitted absorption lines. Pulsation-like variability with an amplitude of about 10 km/s is characteristic only of symmetric weak and moderate-intensity absorption lines. Shell emission lines of iron-group elements can be identified in the long-wavelength part of a spectrum obtained in 2013, whose intensity decreased until they completely disappeared in 2017. In the absence of emission in the cores of the H and K lines of Ca II, emission lines of shell metals are visible in the wings of these lines.  相似文献   

16.
17.
Terry  James P.  Winspear  Nigel  Goff  James 《Natural Hazards》2021,105(1):1013-1030
Natural Hazards - Thailand’s low-lying capital city Bangkok is a dense&nbsp;metropolis, one of Asia’s rapidly growing ‘megacities’, and home to over 10 million...  相似文献   

18.
19.
Climbing dune‐scale cross‐statification is described from Late Ordovician paraglacial successions of the Murzuq Basin (SW Libya). This depositional facies is comprised of medium‐grained to coarse‐grained sandstones that typically involve 0·3 to 1 m high, 3 to 5 m in wavelength, asymmetrical laminations. Most often stoss‐depositional structures have been generated, with preservation of the topographies of formative bedforms. Climbing‐dune cross‐stratification related to the migration of lower‐flow regime dune trains is thus identified. Related architecture and facies sequences are described from two case studies: (i) erosion‐based sandstone sheets; and (ii) a deeply incised channel. The former characterized the distal outwash plain and the fluvial/subaqueous transition of related deltaic wedges, while the latter formed in an ice‐proximal segment of the outwash plain. In erosion‐based sand sheets, climbing‐dune cross‐stratification results from unconfined mouth‐bar deposition related to expanding, sediment‐laden flows entering a water body. Within incised channels, climbing‐dune cross‐stratification formed over eddy‐related side bars reflecting deposition under recirculating flow conditions generated at channel bends. Associated facies sequences record glacier outburst floods that occurred during early stages of deglaciation and were temporally and spatially linked with subglacial drainage events involving tunnel valleys. The primary control on the formation of climbing‐dune cross‐stratification is a combination between high‐magnitude flows and sediment supply limitations, which lead to the generation of sediment‐charged stream flows characterized by a significant, relatively coarse‐grained, sand‐sized suspension‐load concentration, with a virtual absence of very coarse to gravelly bedload. The high rate of coarse‐grained sand fallout in sediment‐laden flows following flow expansion throughout mouth bars or in eddy‐related side bars resulted in high rates of transfer of sands from suspension to the bed, net deposition on bedform stoss‐sides and generation of widespread climbing‐dune cross‐stratification. The later structure has no equivalent in the glacial record, either in the ancient or in the Quaternary literature, but analogues are recognized in some flood‐dominated depositional systems of foreland basins.  相似文献   

20.
Stephanie Butcher 《Geoforum》2008,39(2):1079-1092
This paper is concerned with the experiences of young adults with intellectual disabilities as they transition from high school in search of paid employment. The experiences of people with intellectual disability remain under-researched within geography. We use qualitative techniques to examine the experiences of six young adults with intellectual disabilities. Data are drawn from interviews with the youth themselves, their parents, and employers, as well as from participant observation at an employment training program for the intellectually disabled. While the primary goal of the youth and their parents was to make a transition to competitive paid work, a lack of transition planning, a shortage of appropriate opportunities and other factors meant the youth spent considerable time in ‘transitional spaces’ such as the vocational training centre, sheltered workshop, and supported employment placements. While these spaces are organized around an explicitly economic goal of augmenting the youth’s employability, they can play a critical role as spaces for social interaction and meaningful activity outside the home. Study findings point to the importance of moving beyond paid employment as the core of a successful transition to consider a broader goal of ‘meaningful activity’.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号