共查询到20条相似文献,搜索用时 15 毫秒
1.
海面溢油SAR图像中的相干斑噪声严重影响了后续的图像分割、特征提取和分类.为了更有效地抑制海面溢油SAR图像相干斑,文中提出了一种基于复contourlet域隐马尔科夫树模型的海面溢油SAR图像相干斑抑制方法.首先对观测图像取对数并进行复contourlet变换;然后在复contourlet域中用隐马尔科夫树模型对相邻尺度间的带通方向子带系数进行建模,并依据贝叶斯最小均方误差准则估计无噪系数;最后进行逆复contourlet变换和指数变换,得到相干斑抑制后的图像.大量实验结果表明,与Lee、Kuan、Frost及Gamma Map等4种经典滤波方法以及小波域和contourlet域隐马尔科夫树模型方法相比,文中方法从主观视觉和客观定量评价两方面来看综合性能更为优越,是一种行之有效的SAR遥感图像海面溢油检测的预处理方法. 相似文献
2.
SAR(synthetic aperture radar)图像溢油暗斑准确识别对海上溢油应急工作具有重要的意义。为减少SAR图像特征提取、特征选择过程中人为因素对溢油检测精度的影响,本文将Faster R-CNN卷积神经网络模型引入SAR图像溢油检测并进行了改进。针对溢油暗斑形状多样及SAR图像背景复杂的特点,选用结构一致且实用性强的VGG16卷积网络获取图像特征,并使用软化非极大值抑制算法(Soft-NMS)进行优化。同时基于相同的数据集,提取常用的SAR图像几何特征、灰度特征和纹理特征,构建反向传播(backpropagation,BP)人工神经网络溢油检测方法并与Faster R-CNN方法进行对比。实验结果表明,基于改进Faster-RCNN模型的溢油检测方法溢油检测率达到0.78,且溢油检测虚警率低于0.25,相比BP人工神经网络溢油检测方法样本识别率、溢油检测率分别提高了4%和5%,溢油虚警率降低了5%。 相似文献
3.
A study of oil spill detection using ASAR images 总被引:5,自引:3,他引:2
The oil spilled worldwide causes ecological disasters that result in enormous damages to the quality of marine environment, and great expenses on clear-up operations are needed. Due to its wide coverage and day-night all-weather observation capability, Synthetic Aperture Radar (SAR) is an important tool for oil spill monitoring and detection. C-band SAR is well adapted to detect oil pollution because oil slicks dampen the Bragg waves and reduce radar backscattering coefficients. In order to detect the area of oil slicks, the algorithm consists of these steps:Preprocessing, Masking of land areas, Detection of dark spots, Spot feature extraction, Dark spot classification. In this paper, the authors examined two coastal regions around Hong Kong and Yantai, China. The obtained results performed on Envisat ASAR images have demonstrated that it is efficient to detect oil spill around the coastal regions. The methodology still needs to be refined with the collection of more SAR data in the near future. 相似文献
4.
5.
《Oceanic Engineering, IEEE Journal of》2005,30(3):496-507
In this paper, a physical approach to support oil spills observation over synthetic aperture radar (SAR) images is presented. Electromagnetic model is based on an enhanced damping model that takes into account oil viscoelastic properties and wind speed. As a matter of fact, a multisensor approach is considered and a constant false alarm rate (CFAR) filter is used to minimize speckle effect. A set of experiments is presented and discussed. They show that oil spill processing is effective over single-look SAR images using mean input data. 相似文献
6.
Polarimetric synthetic aperture radar(SAR) oil spill detection parameters conformity coefficient(μ), Muller matrix parameters(|C|, B_0), the eigenvalues of simplified coherency matrix(λ_(nos)) and the influence of SAR observing parameters, ocean environment and noise level are investigated. Radarsat-2 data are used to make systematic analysis of polarimetric parameters for different incidences, wind speeds, noise levels and the ocean phenomena(oil slick and look likes). The influence of the SAR observing parameters, the ocean environment and the noise level on the typical polarimetric SAR parameter conformity coefficient has been analyzed. The results indicate that conformity coefficient cannot be simply used for oil spill detection, which represents the image signal to the noise level to some extent. When the signals are below the noise level for the oil slick and the look likes, the conformity coefficients are negative; while the signals above the noise level corresponds to positive conformity coefficients. For dark patches(low wind and biogenic slick) with the signal below the noise,polarization features such as conformity coefficient cannot separate them with oil slick. For the signal above the noise, the oil slick, the look likes(low wind and biogenic slick) and clean sea all have positive conformity coefficients, among which, the oil slick has the smallest conformity coefficient, the look likes the second, and the clean sea the largest value. For polarimetric SAR data oil spill detection, the noise plays a significant role. So the polarimetric SAR data oil spill detection should be carried out on the basis of noise consideration. 相似文献
7.
8.
应用极化合成孔径雷达检测海上溢油研究进展 总被引:2,自引:2,他引:2
海上溢油给海洋生态环境带来严重的影响,快速准确地探测溢油对于防灾减灾具有重要的意义。利用卫星遥感探测溢油已成为目前主要的检测手段,大多采用合成孔径雷达(SAR)数据,运用图像处理的方法,开展了多种溢油提取算法的研究,取得了较好的结果,但由于海洋的类溢油现象存在,造成提取信息的精度达不到要求。近年来,国内外运用极化SAR数据开展溢油信息提取研究,从极化分解与相位差等角度对溢油特性分析,能有效地区分一些类溢油现象,得到了较理想的结果。分析了应用SAR数据开展溢油信息提取的研究状况,总结了溢油极化SAR探测的研究,指出了目前研究中存在的不足,并提出了今后溢油极化SAR遥感监测的方向。 相似文献
9.
This paper presents the development and application of two-dimensional and three-dimensional oil trajectory and fate models for coastal waters. In the two-dimensional model, the oil slick is divided into a number of small grids and the properties of each grid due to spreading, advection, turbulent diffusion, evaporation and dissolution are studied. This model can predict the movement of the oil slick on the water surface. In order to simulate the distribution of oil particles in the water column, a three-dimensional oil fate model is developed based on the mass transport equation and the concentration distribution of oil particles can be solved. A comparison of numerical results with the observed data shows good conformity. 相似文献
10.
溢油已是当前海洋生态环境破坏的主要因素之一,因此对海洋溢油的检测分析是当前海洋环境保护的一个重要课题。传统的溢油提取仅仅是单独依靠光学影像的光谱信息或者合成孔径雷达(SAR)影像的后向散射系数信息进行提取,这会造成很多同谱异物或者粗糙度相近似的地物错分,因此除了利用传统的影像信息以外,还需结合影像的纹理信息,从而提高溢油提取的精度,减少错分地物的数量。选用2006年渤海地区的三景同轨SAR影像作为数据基础,应用基于灰度共生矩阵的方法对其进行纹理分析。该方法可以很好地对图像区域和表面进行感知并能够从像元的灰度相关性上对纹理特征进行详细描述,因此适合于SAR影像的海洋溢油检测。在纹理分析的过程中有很多的参数需要选择,参数选择的好坏将直接影响最终提取结果的精度。通过对纹理分析过程中的参数进行讨论、实验、选择与验证,最终确定了基于灰度共生矩阵纹理分析中各参数的值,并选择了局部平稳、非相似性、对比度、变化量4个特征量作为溢油提取的纹理特征统计量。将纹理特征与SAR自身的后向散射系数相结合,通过神经网络分类法对其进行分类,并计算出分类精度为80.65%,分类效果良好。由此说明了将影像的传统信息与纹理信息相结合进行溢油提取是一种可行而有效的方法,同时也为后续的海洋溢油检测工作奠定了一定的基础。 相似文献
11.
多极化SAR数据海面溢油检测研究日益受到重视。本文研究不同波段极化SAR数据的海面溢油检测能力,为最大程度减小观测条件、环境因素等的影响,选取准同步获取的SIR-C/X多极化SAR数据。针对海面油膜、生物油膜和低风区疑似溢油现象,研究L波段和C波段的共极化相位差、一致性系数、极化熵、各向异性和平均散射角等极化特征对海面油膜以及不同海面暗斑现象的检测能力。研究结果表明:在海面溢油检测以及探测不同暗斑现象间差异方面,C波段总体优于L波段;L波段,极化分解特征各向异性参数优于共极化相位差和一致性系数;C波段,共极化相位差、一致性系数特征优于极化分解特征各向异性和极化熵,结合平均散射角特征有助于滤除生物油膜和低风区。 相似文献
12.
海上溢油事故不仅会造成大面积的海水污染,还会对海洋生态系统造成严重破坏。为此,采用有效的方法评估溢油事件引起的生态风险,对防灾减灾工作具有重要意义。本文以发生于2011年6月的渤海蓬莱19-3溢油事故为例,使用两种溢油模型(GNOME轨迹模型与ADIOS风化模型)模拟了事故初期油膜的运动轨迹与风化过程。基于模拟结果,利用CAFE模型(Chemical Aquatic Fate and Effect)拟合了相应的物种敏感度分布(species sensitivity distribution,SSD)曲线,首次结合三种模型工具对渤海进行了生态风险评估研究。结果显示,随着原油的持续泄漏,其主要有毒物质(苯系物)浓度达到了1 300μg/L,超过了1%危害浓度值(Hazard Concentration 1%,HC1)。结果表明,在事故初期所产生的生态风险不可忽视,并且风险(多个物种的潜在影响分数)会在96 h内以每日约1%的趋势增长。本文结合溢油运动轨迹和SSD曲线,绘制出了事故期间的生态风险时空分布图。经过定量化的评估,首次发现事故的整体生态风险随时间呈近似二次函数增长,同溢油轨迹一样,向西北方向扩散,越靠近溢油源的海域生态风险概率越高。 相似文献
13.
就SAR图像溢油检测的方法论而言,用于识别溢油和疑似现象的定性或定量的统计特征量选择,通常是任意的。对于不同的分类模型,所选用的特征量也不尽相同。主要是进行海洋SAR图像特征提取及其关键度分析。其目的是将"最小距离"判别法应用于海上溢油和疑似溢油的识别研究。首先,针对海洋SAR图像溢油检测常用的特征量,进行冗余处理;然后,引入关键系数,定量地研究特征量的关键度,提取显著特征量;藉以构造一个多维的特征矢量空间,以适于最小距离判别法在特征矢量空间中进行溢油和疑似溢油的识别研究。 相似文献
14.
A comprehensive oilspill fates model, developed by Cornillon and Spaulding at the University of Rhode Island, has been employed to hindcast the well-studied Argo Merchant spill. Using data collected during the spill to define the environmental conditions and the oil composition, properties and release rates, the oil spill fates model was used to predict the spatial and temporal distribution of spilled oil from December 16 to 31, 1976. Comparison of model predictions to observations for spilled oil mass balance, surface trajectories and oiled surface area was in general quite good. Improved predictions require a better definition of the wind and tidally-forced circulation in the vicinity of the wreck site, a more soundly based theory for oil entrainment or dispersion into the water column and an oil spreading theory which more accurately addresses the complex behaviour of a weathering multicomponent petroleum hydrocarbon. 相似文献
15.
渤海溢油三维漂移数值模拟研究 总被引:2,自引:0,他引:2
国家海洋局北海预报中心于2011年开发了渤海三维溢油模型,该模型在分析国内外溢油模型现状的基础上,借鉴当今流行的数值模拟方法,使用油粒子模型与油膜扩展模型相结合的方式,用拉格朗日方法追踪每个带有一定油量的油粒子的轨迹,针对每一个油粒子则使用油膜扩展理论计算其油膜扩展过程。该模型可实现对溢油油污上升及水平输运过程、海表面油污浓度的预报,通过三组理想试验和2012年的海上溢油实验数据,对模型的各项功能、稳定性及模型精度进行了对比验证,结果较好,模型可实现对渤海海域海底或水下发生溢油的数值模拟。该模型解决了以往二维溢油模型在模拟钻井平台及海底输油管道泄漏等溢油事故方面的不足,可更好地为溢油灾害对海洋环境影响的估计提供有效参考信息。 相似文献
16.
基于MIKE SA溢油模块,以燃料油为油种,建立了厦门西港海域溢油模型,模拟静风、主导风向(东北东风)和不利风向(西南风)3种风场条件下,一个潮周期内涨急、高潮、落急和低潮4个时段发生10 t溢油后油膜的漂移路径和影响范围.结果显示,发生在厦门西港海域的溢油在海面的漂移过程主要受潮流和风的影响,其中潮流起着主导作用.不同风向条件下,24 h内油膜的影响范围不同,静风条件下溢油浓度超一类(或二类,≥0.05 mg/dm3)、超三类(≥0.30 mg/dm3)和超四类(≥0.50 mg/dm3)的总影响面积分别为31.33、19.63和11.74 km2;主导风向条件下溢油浓度超一类(或二类)、超三类和超四类的总影响面积分别为99.62、69.01和8.99 km2;不利风向溢油浓度超一类(或二类)、超三类和超四类的总影响面积分别为8.38、5.05和2.10 km2.该预测结果可给出溢油事故发生后的影响范围、影响程度和影响敏感目标的时间,可为溢油事故应急决策的制定及溢油损害评估提供科学决策和支持,提升厦门海域环境风险管理应急能力建设. 相似文献
17.
Accurate detection of an oil spill is of great significance for rapid response to oil spill accidents. Multispectral images have the advantages of high spatial resolution, short revisit period, and wide imaging width, which is suitable for large-scale oil spill monitoring. However, in wide remote sensing images, the number of oil spill samples is generally far less than that of seawater samples. Moreover, the sea surface state tends to be heterogeneous over a large area, which makes the identification of oil spills more difficult because of various sea conditions and sunglint. To address this problem, we used the F-Score as a measure of the distance between forecast value and true value, proposed the Class-Balanced F loss function (CBF loss function) that comprehensively considers the precision and recall, and rebalances the loss according to the actual sample numbers of various classes. Using the CBF loss function, we constructed convolution neural networks (CBF-CNN) for oil spill detection. Based on the image acquired by the Coastal Zone Imager (CZI) of the Haiyang-1C (HY-1C) satellite in the Andaman Sea (study area 1), we carried out parameter adjustment experiments. In contrast to experiments of different loss functions, the F1-Score of the detection result of oil emulsions is 0.87, which is 0.03–0.07 higher than cross-entropy, hinge, and focal loss functions, and the F1-Score of the detection result of oil slicks is 0.94, which is 0.01–0.09 higher than those three loss functions. In comparison with the experiment of different methods, the F1-Score of CBF-CNN for the detection result of oil emulsions is 0.05–0.12 higher than that of the deep neural networks, supports vector machine and random forests models, and the F1-Score of the detection result of oil slicks is 0.15–0.22 higher than that of the three methods. To verify the applicability of the CBF-CNN model in different observation scenes, we used the image obtained by HY-1C CZI in the Karimata Strait to carry out experiments, which include two studies areas (study area 2 and study area 3). The experimental results show that the F1-Score of CBF-CNN for the detection result of oil emulsions is 0.88, which is 0.16–0.24 higher than that of other methods, and the F1-Score of the detection result of oil slicks is 0.96–0.97, which is 0.06–0.23 higher than that of other methods. Based on all the above experiments, we come to the conclusions that the CBF loss function can restrain the influence of oil spill and seawater sample imbalance on oil spill detection of CNN model thus improving the detection accuracy of oil spills, and our CBF-CNN model is suitable for the detection of oil spills in an area with weak sunglint and can be applied to different scenarios of CZI images. 相似文献
18.
underwater topography is one of oceanic features detected by Synthetic Aperture Radar. Underwater topography SAR imaging mechanism shows that tidal current is the important factor for underwater topography SAR imaging. Thus under the same wind field condition, SAR images for the same area acquired at different time include different information of the underwater topography. To utilize synchronously SAR images acquired at different time for the underwater topography SAR detection and improve the precision of detection, based on the detection model of underwater topography with single SAR image and the periodicity of tidal current, a detection model of underwater topography with a series of SAR images acquired at different time is developed by combing with tide and tidal current numerical simulation. To testify the feasibility of the presented model, Taiwan Shoal located at the south outlet of Taiwan Strait is selected as study area and three SAR images are used in the underwater topography detection. The detection results are compared with the field observation data of water depth carried out by R/V Dongfanghong 2, and the errors of the detection are compared with those of the single SAR image. All comparisons show that the detection model presented in the paper improves the precision of underwater topography SAR detection, and the presented model is feasible. 相似文献
19.
The key point for rational allocation of emergency resources is to match the oil spill response capacity with the risk of oil spill. This paper proposes an innovative risk-based model for quantitative regional emergency resource allocation, which comprehensively analyzes the factors such as oil spill probability, hazard consequences, oil properties, weathering process and operation efficiency, etc. The model calculates three major resources, i.e., mechanical recovery, dispersion and absorption, according to the results of risk assessment. In a field application in Xiaohu Port, Guangzhou, China, and the model achieved scientific and rational allocation of emergency resources by matching the assessed risk with the regional capacity, and allocating emergency resources according to capability target. The model is considered to be beneficial to enhancing the resource efficiency and may contribute to the planning of capacity-building programs in high-risk areas. 相似文献
20.
溢油污染不仅会造成巨大的经济损失,而且给生态环境带来难以修复的破坏。准确、高效地监测海面溢油仍是当前亟需解决的问题。紫外传感器对油膜非常敏感,可快速发现,但存在误判;而SAR(SyntheticApertureRadar)溢油探测的精度较高,两者相结合可准确探测溢油。无人机平台可低成本地实现溢油快速应急响应,无人机载SAR和紫外传感器的载荷重量小,可同时集成于无人机上开展联合溢油探测,以满足业务化监测需求,此方面的研究尚未见有相关报道。本文拟研究溢油不同种类、厚度、在不同海洋环境条件下的紫外图像特征和SAR纹理特征、形状特征、散射特征,构建溢油特征数据库,并建立一种基于特征组合的溢油SAR与紫外联合探测方法;在此基础上研究对无人机数据获取模式和控制单元等的改造方案,进而实现溢油SAR和紫外图像的高效获取。 相似文献