首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
Most vegetated land surfaces contain macropores that may have a significant effect on the rate of infiltration of water under ponded conditions on the ground surface. Owing to the small-scale variations of the land topography (microtopography), only portions of the land area may get ponded during the process of overland flow. As the macropores transmit water at much higher rates than the primary soil matrix, higher macropore activation in ponded areas produces larger effective infiltration rates into the soil. Therefore, overland flow and infiltration into the macroporous vadose zone are interrelated. Representing the microtopographic variation of the land surface by a simple sine wave function, a method was developed to relate the ponding area to the average ponding depth which was determined by overland flow. A numerical model coupling overland flow and infiltration into the macroporous vadose zone was developed. Overland flow was simulated using the St. Venant equations with the inertia terms neglected. A single macropore model was used to simulate the infiltration into the macroporous vadose zone. The interaction between overland flow and the infiltration into the macroporous vadose zone was analyzed for a hypothetical watershed. The sensitivity analysis revealed that the interaction of macropore flow and overland flow is significant. For the conditions tested, the macropore flow and the overland flow were found to be more sensitive to the macroporosity and less sensitive to the microtopographic surface variation.  相似文献   

2.
By implementing the moisture-based form of Richards’ equation into the geochemical modelling framework PHREEQC, a generic tool for the simulation of one-dimensional flow and solute transport in the vadose zone undergoing complex geochemical reactions was developed. A second-order, cell-centred, explicit finite difference scheme was employed for the numerical solution of the partial differential equations of flow and transport. In this scheme, the charge-balanced soil solution is treated as an assembly of elements, where changes in water and solute contents result from fluxes of elements across cell boundaries. Therefore, water flow is considered in terms of oxygen and hydrogen transport.  相似文献   

3.
Groundwater flows and travel times were analyzed under a landfill site characterized by a thick unsaturated zone, in an arid environment, using two-dimensional models. Transport in the unsaturated zone is important in arid environments with thick vadose zones and usually determines the travel time of groundwater from the landfill site to the regulatory compliance surface. The combined use of a parallel flow (Dupuit-Forchheimer) areal model and vertical cross-sectional model is explored at a site typical in the utility industry. Flow paths and travel times to the compliance zone are obtained for use in landfill site design or environmental impact assessments. Sensitivity analysis shows that boundary conditions are important factors influencing the entire analysis and thus need to be confirmed with field measurements.  相似文献   

4.
This paper presents an introductory overview of recently developed stochastic theories for tackling spatial variability problems in predicting groundwater flow and solute transport. Advantages and limitations of the theories are discussed. Lastly, strategies based on the stochastic approaches to predict solute transport in aquifers are recommended.  相似文献   

5.
Understanding the dynamics and mechanisms of soil water movement and solute transport is essential for accurately estimating recharge rates and evaluating the impacts of agricultural activities on groundwater resources. In a thick vadose zone (0–15 m) under irrigated cropland in the piedmont region of the North China Plain, soil water content, matric potential, and solute concentrations were measured. Based on these data, the dynamics of soil water and solutes were analysed to investigate the mechanisms of soil water and solute transport. The study showed that the 0–15‐m vadose zone can be divided into three layers: an infiltration and evaporation layer (0–2 m), an unsteady infiltration layer (2–6 m), and a quasi‐steady infiltration layer (6–15 m). The chloride, nitrate, and sulphate concentrations all showed greater variations in the upper soil layer (0–1 m) compared to values in the deep vadose zone (below 2 m). The average concentrations of these three anions in the deep vadose zone varied insignificantly with depth and approached values of 125, 242, and 116 mg/L. The accumulated chloride, sulphate, and nitrate were 2,179 ± 113, 1,760 ± 383, and 4,074 ± 421 kg/ha, respectively. The soil water potential and solute concentrations indicated that uniform flow and preferential flow both occurred in the deep vadose zone, and uniform flow was the dominant mechanism of soil water movement in this study. The piston‐like flow velocity of solute transport was 1.14 m per year, and the average value of calculated leached nitrate nitrogen was 107 kg/ha?year below the root zone. The results can be used to better understand recharge processes and improve groundwater resources management.  相似文献   

6.
The hyporheic zone (HZ) has the capability to eliminate and attenuate nutrients and contaminants in riverine systems. Biogeochemical reactions and the potential elimination of contaminants are strongly controlled by the flow paths and dynamics in the HZ. Nevertheless, an easily applicable method for the field determination of flow patterns in the HZ is still lacking. Therefore, a heat pulse technique, which traces the movement of a short heat pulse in the upper part of the HZ and other sand beds, was developed. Five rods are vertically driven into the sediment of the streambed; one rod with a heater as point source located in about 10‐cm sediment depth and four rods with four temperature sensors in 3 cm distance, arranged concentrically with 7 cm diameter around the heating rod. Subsequently, a heat pulse is applied and the resulting breakthrough curves are indicative of flow velocities and flow directions in the streambed. A rough data analysis procedure is also suggested. In addition, laboratory experiments were performed to test the heat pulse technique. These experiments were validated based on coupled numerical modelling of flow and heat transport. First field tests of the method prove that the method is easily applicable under field conditions. These first field tests showed highly complex flow patterns with flow velocities from 1·8 to 4·9 cm min?1 and flow directions from parallel to surface flow to opposite to surface flow. This suggests the need for a robust method to quantify hyporheic flow patterns in situ. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The unconditional stochastic studies on groundwater flow and solute transport in a nonstationary conductivity field show that the standard deviations of the hydraulic head and solute flux are very large in comparison with their mean values (Zhang et al. in Water Resour Res 36:2107–2120, 2000; Wu et al. in J Hydrol 275:208–228, 2003; Hu et al. in Adv Water Resour 26:513–531, 2003). In this study, we develop a numerical method of moments conditioning on measurements of hydraulic conductivity and head to reduce the variances of the head and the solute flux. A Lagrangian perturbation method is applied to develop the framework for solute transport in a nonstationary flow field. Since analytically derived moments equations are too complicated to solve analytically, a numerical finite difference method is implemented to obtain the solutions. Instead of using an unconditional conductivity field as an input to calculate groundwater velocity, we combine a geostatistical method and a method of moment for flow to conditionally simulate the distributions of head and velocity based on the measurements of hydraulic conductivity and head at some points. The developed theory is applied in several case studies to investigate the influences of the measurements of hydraulic conductivity and/or the hydraulic head on the variances of the predictive head and the solute flux in nonstationary flow fields. The study results show that the conditional calculation will significantly reduce the head variance. Since the hydraulic head measurement points are treated as the interior boundary (Dirichlet boundary) conditions, conditioning on both the hydraulic conductivity and the head measurements is much better than conditioning only on conductivity measurements for reduction of head variance. However, for solute flux, variance reduction by the conditional study is not so significant.  相似文献   

8.
The objective of this work was to build a prognostic water flow model and potentially toxic elements (lead, cadmium, zinc) transport model in the unsaturated zone. Research was conducted in the catchment area of Kosnica regional wellfield, where the unsaturated zone is characterised by Fluvisol. Lower sorption capacities were determined in the first horizons for all three potentially toxic elements. Correlation coefficient of the measured and simulated values of tracer concentration is 0.58 for the AC horizon and 0.84 for the 2C/C1 horizon. Based on calibrated water flow and transport parameters, a prognostic water flow model and potentially toxic elements (lead, cadmium, zinc) transport model in the unsaturated zone was built. In case of an accidental spill of potentially toxic elements with concentrations of 1000 mg/l, the risk of contamination of the aquifer is present. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Hydrological and hydrochemical processes in the critical zone of karst environments are controlled by the fracture‐conduit network. Modelling hydrological and hydrochemical dynamics in such heterogeneous hydrogeological settings remains a research challenge. In this study, water and solute transport in the dual flow system of the karst critical zone were investigated in a 73.5‐km2 catchment in southwest China. We developed a dual reservoir conceptual run‐off model combined with an autoregressive and moving average model with algorithms to assess dissolution rates in the “fast flow” and “slow flow” systems. This model was applied to 3 catchments with typical karst critical zone architectures, to show how flow exchange between fracture and conduit networks changes in relation to catchment storage dynamics. The flux of bidirectional water and solute exchange between the fissure and conduit system increases from the headwaters to the outfall due to the large area of the developed conduits and low hydraulic gradient in the lower catchment. Rainfall amounts have a significant influence on partitioning the relative proportions of flow and solutes derived from different sources reaching the underground outlet. The effect of rainfall on catchment function is modulated by the structure of the karst critical zone (e.g., epikarst and sinkholes). Thin epikarst and well‐developed sinkholes in the headwaters divert more surface water (younger water) into the underground channel network, leading to a higher fraction of rainfall recharge into the fast flow system and total outflow. Also, the contribution of carbonate weathering to mass export is also higher in the headwaters due to the infiltration of younger water with low solute concentrations through sinkholes.  相似文献   

10.
南海东北部973剖面BSR及其热流特征   总被引:2,自引:5,他引:2       下载免费PDF全文
对南海东北部973项目采集的地震测线进行了处理,阐明了恒春海脊处天然气水合物似海底反射(BSR)的特征.不同类型剖面的分析表明,单道地震剖面可以揭示南海东北部地区BSR一定的分布,但地震处理对揭示BSR分布全貌起重要作用.南海东北部的BSR具有世界大陆边缘BSR典型的特征,切穿了沉积层理反射,与海底起伏大体平行,为一强振幅的负极性反射.该BSR特征明显,意味着南海东北部地区存在含天然气水合物沉积.利用甲烷水合物与多组分天然气水合物相平衡曲线,计算了稳定带底界的埋深,并与BSR深度进行了对比分析.无论是甲烷水合物稳定带底界还是多组分天然气水合物稳定带的底界,单一地温梯度计算的结果不可能与BSR深度在整个剖面上对应.可知本区横向上地温梯度变化较大.利用BSR资料估算了地温梯度并求得热流值.计算表明,地温梯度与热流值由西向东,随着离海沟距离的增大、离岛弧距离的减小而减小.BSR计算得到的热流值为28~64 mW/m2,与台湾西南实测热流值的结果基本可以对比.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号