首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the analytic element method, strings of line-sinks may be used to model streams and strings of line-doublets may be used to model impermeable walls or boundaries of inhomogeneities. The resulting solutions are analytic, but the boundary conditions are met approximately. Equations for line elements may be derived in two ways: through integration of point elements (the integral solution) and through application of separation of variables in elliptical coordinates (the elliptical solution). Using both approaches, two sets of line elements are presented for four flow problems: line-sinks and line-doublets in (un)confined flow, and line-sinks and line-doublets in semi-confined flow. Elliptical line elements have the advantage that they do not need a far-field expansion for accurate evaluation far away from the element. The derivation of elliptical line elements is new and applicable to both (un)confined flow and semi-confined flow; only the resulting expressions for elliptical line elements for semi-confined flow have not been found in the current groundwater literature. Existing solutions for elliptical line elements for (un)confined flow were intended for the modeling of isolated features. Four examples are presented, one for each flow problem, to demonstrate that strings of elliptical line elements may be used to obtain accurate solutions; elliptical line-doublets for semi-confined flow can only be strung together in combination with two integral line-doublets. For a zigzag canal in (un)confined flow, a string of elliptical line-sinks performed better than a string of integral line-sinks of the same order when the smallest angle between two adjacent segments is less than 130°. Elliptical line-doublets performed better than integral line-doublets for a square inhomogeneity in a uniform, confined flow field; the difference was smaller for an octagonal inhomogeneity. For semi-confined flow, the difference between the integral and elliptical line-sinks was small when modeling a zigzag canal.  相似文献   

2.
Two new approaches are presented for the accurate computation of the potential due to line elements that satisfy the modified Helmholtz equation with complex parameters. The first approach is based on fundamental solutions in elliptical coordinates and results in products of Mathieu functions. The second approach is based on the integration of modified Bessel functions. Both approaches allow evaluation of the potential at any distance from the element. The computational approaches are applied to model transient flow with the Laplace transform analytic element method. The Laplace domain solution is computed using a combination of point elements and the presented line elements. The time domain solution is obtained through a numerical inversion. Two applications are presented to transient flow fields, which could not be modeled with the Laplace transform analytic element method prior to this work. The first application concerns transient single-aquifer flow to wells near impermeable walls modeled with line-doublets. The second application concerns transient two-aquifer flow to a well near a stream modeled with line-sinks.  相似文献   

3.
Bakker M 《Ground water》2006,44(1):81-85
An analytic element approach is presented for the modeling of multiaquifer domains embedded in a single-aquifer model. The inside of each domain may consist of an arbitrary number of aquifers separated by leaky layers. The analytic element solution is obtained through a combination of existing single-aquifer and multiaquifer analytic elements and allows for the analytic computation of head and leakage at any point in the aquifer. Along the boundary of an embedded multiaquifer domain, the normal flux is continuous everywhere; continuity of head across the boundary is met exactly at collocations points and approximately, but very accurately, in between. The analytic element solution compares well with an existing exact solution. A hypothetical example with a river intersecting two embedded domains illustrates the practical application of the proposed approach.  相似文献   

4.
A new analytic solution approach is presented for the modeling of steady flow to pumping wells near rivers in strip aquifers; all boundaries of the river and strip aquifer may be curved. The river penetrates the aquifer only partially and has a leaky stream bed. The water level in the river may vary spatially. Flow in the aquifer below the river is semi-confined while flow in the aquifer adjacent to the river is confined or unconfined and may be subject to areal recharge. Analytic solutions are obtained through superposition of analytic elements and Fourier series. Boundary conditions are specified at collocation points along the boundaries. The number of collocation points is larger than the number of coefficients in the Fourier series and a solution is obtained in the least squares sense. The solution is analytic while boundary conditions are met approximately. Very accurate solutions are obtained when enough terms are used in the series. Several examples are presented for domains with straight and curved boundaries, including a well pumping near a meandering river with a varying water level. The area of the river bottom where water infiltrates into the aquifer is delineated and the fraction of river water in the well water is computed for several cases.  相似文献   

5.
Strack OD 《Ground water》2006,44(1):91-98
We deal in this paper with an ongoing development of the analytic element method. We present in outline new analytic line elements that are suitable to model general flow fields, i.e., flow fields that possess a continuously varying areal inflow or outflow. These elements are constructed specifically to model the leakage through leaky layers that separate aquifers in leaky systems and to model transient effects. The leakage or release from storage underneath linear features is modeled precisely by the new elements; the singularity in leakage is matched exactly by the approximate solution. Applications are given for a problem involving leakage and for a case of transient flow. We note that the analytic elements can be used also to reproduce the effect of continuously varying aquifer properties, e.g., the hydraulic conductivity or the elevation of the base of the aquifer. In the latter case, the elements would reproduce the rotation of the flow field caused by the variation in properties, rather than the divergence as for the case of leakage.  相似文献   

6.
An analytical approach is presented for solving problems of steady, two-dimensional groundwater flow with inhomogeneity boundaries. A common approach for such problems is to separate the problem domain into two homogeneous domains, search for solutions in each domain, and then attempt to match conditions, either exactly or approximately, along the inhomogeneity boundary. Here, we use classical solutions to problems with inhomogeneity boundaries with simple geometries, and map conformally the entire domain onto a new one. In this way, existing solutions are used to solve problems with more complex, and more practical, boundary geometries. The approach is general, but subject to some restrictions on the mapping functions that may be used.Using this approach, we develop explicit analytical solutions for two problems of practical interest. The first problem addresses aquifer interaction across a gap in an impermeable separating layer; flow regimes are defined and the interaction is quantified. The second solution represents flow in the vertical plane to a partially clogged stream bed that is partially penetrating the aquifer; the stream bed is modeled as a thin layer of low-permeability silt. Flow regimes for groundwater surface–water interaction are quantified analytically.  相似文献   

7.
刘春平  邓亮  廖欣  万飞  石云 《地震》2010,30(4):50-57
气压作用下, 井-含水层系统中地下水流是一类流体力学问题。 本文应用井壁水流通量边界条件和气压作用下井壁内外水(孔)压平衡条件, 提出了一个井水位随气压变化的解析公式。 解析式表明, 气压系数随时段长度增加而增大, 并趋于气压常数; 气压系数随时段长度的变化只依赖于导水系数与井半径平方的比值(T/r2w), 而与气压变化过程无关; 气压常数只与含水层的一维荷载效率(B)有关, 而与导水系数和井半径无关。 解析解所反映的气压系数与时段长度的关系, 与南溪井实测序列数据分析结果具有很好的一致性。 根据气压系数随时段长度变化过程, 提出了一个参数估计方法, 应用于估计南溪井含水层气压常数和导水系数, 并对本文提出的参数估计方法进行了讨论。  相似文献   

8.
An analytic approach is presented for the simulation of variations in the groundwater level due to temporal variations of recharge in surficial aquifers. Such variations, called groundwater dynamics, are computed through convolution of the response function due to an impulse of recharge with a measured time series of recharge. It is proposed to approximate the impulse response function with an exponential function of time which has two parameters that are functions of space only. These parameters are computed by setting the zeroth and first temporal moments of the approximate impulse response function equal to the corresponding moments of the true impulse response function. The zeroth and first moments are modeled with the analytic element method. The zeroth moment may be modeled with existing analytic elements, while new analytic elements are derived for the modeling of the first moment. Moment matching may be applied in the same fashion with other approximate impulse response functions. It is shown that the proposed approach gives accurate results for a circular island through comparison with an exact solution; both a step recharge function and a measured series of 10 years of recharge were used. The presented approach is specifically useful for modeling groundwater dynamics in aquifers with shallow groundwater tables as is demonstrated in a practical application. The analytic element method is a gridless method that allows for the precise placement of ditches and streams that regulate groundwater levels in such aquifers; heads may be computed analytically at any point and at any time. The presented approach may be extended to simulate the effect of other transient stresses (such as fluctuating surface water levels or pumping rates), and to simulate transient effects in multi-aquifer systems.  相似文献   

9.
Multilayer analytic element modeling of radial collector wells   总被引:1,自引:0,他引:1  
A new multilayer approach is presented for the modeling of ground water flow to radial collector wells. The approach allows for the inclusion of all aspects of the unique boundary condition along the lateral arms of a collector well, including skin effect and internal friction losses due to flow in the arms. The hydraulic conductivity may differ between horizontal layers within the aquifer, and vertical anisotropy can be taken into account. The approach is based on the multilayer analytic element method, such that regional flow and local three-dimensional detail may be simulated simultaneously and accurately within one regional model. Horizontal flow inside a layer is computed analytically, while vertical flow is approximated with a standard finite-difference scheme. Results obtained with the proposed approach compare well to results obtained with three-dimensional analytic element solutions for flow in unconfined aquifers. The presented approach may be applied to predict the yield of a collector well in a regional setting and to compute the origin and residence time, and thus the quality, of water pumped by the collector well. As an example, the addition of three lateral arms to a collector well that already has three laterals is investigated. The new arms are added at an elevation of 2 m above the existing laterals. The yield increase of the collector well is computed as a function of the lengths of the three new arms.  相似文献   

10.
We present explicit analytical solutions to problems of steady groundwater flow to a pumping well in an aquifer divided by an infinite, linear fault. The transmissivity of the aquifer is allowed to jump from one side of the fault to the other to model the juxtaposition of host rocks with different hydrologic properties caused by faulting. The fault itself is represented as a thin anisotropic inhomogeneity; this allows the fault to act as a combined conduit–barrier to groundwater flow, as is commonly described in the literature. We show that the properties of the fault may be represented exactly by two lumped parameters—fault resistance and fault conductance—and that the effects of the fault on flow in the adjacent aquifer is independent of the fault width. We consider the limiting cases of a purely leaky and a purely conductive fault where the fault domain may be replaced exactly by internal boundary conditions, and we investigate the effects of fault properties on the flow behavior in the adjacent aquifers. We demonstrate that inferring fault properties based on field observations of head in the aquifer is inherently difficult, even when the fault may be described by one of the two limiting cases. In particular, the effects of a leaky fault and a conductive fault on heads and discharges in the aquifer opposite the fault from the well, are shown to be identical in some cases.  相似文献   

11.
The Analytic Element Method (AEM) provides a convenient tool for groundwater flow analysis in unbounded continuous domains. The AEM is based on the superposition of analytic functions, known as elements, useful at both regional and local scales. In this study, analytic elements for strip aquifers are presented. Such aquifers occur in riverine or coastal deposits and in outcrop zones of confined aquifers. Local flow field is modelled indirectly, using a reference plane related to the aquifer domain through the Schwarz‐Christoffel transform. The regional flow is obtained as a solution of the one‐dimensional flow equation. The proposed methodology was tested by modelling two hypothetical situations, which were compared to exact solutions. It is shown that regional boundaries can be reproduced exactly while local fields are adequately reproduced with analytic elements. The developed elements are applied to simulate a real flow field in northeastern Brazil showing good agreement with measured water levels. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The strategic project of economic development in the Dornogobi Province in Mongolia is dependent on water supply. Thus a comprehensive hydrogeological characterization was focused on the Upper Cretaceous multi-aquifer system north of Sainshand city. A conceptual model was developed to discover the groundwater flow pattern essential to correct the setting of the numerical model of groundwater flow created using MODFLOW to assess the natural recharge of the aquifer. The conceptualization was based on geological and hydrogeological characterization. However, the evaluation of hydrochemistry proved to be the key factor revealing the principal feature of the groundwater flow pattern, which is the presence of preferential flow zones. These zones allow for intensive transfer of relatively fresh Na(Mg,Ca)?HCO3-dominated groundwater into discharge areas, where it leaks into the Quaternary aquifer. The numerical model suggested an enormous natural recharge of 22 100 m3/d, originating in 64% of the preferential flow zones.  相似文献   

13.
The delineation of well capture zones is a basic component of ground water protection. The conventional methodology for capture zone delineation is backward advective particle tracking, often applied under the assumption of a two-dimensional aquifer. The suitability of the conventional approach for complex heterogeneous multi-aquifer systems was investigated, using the Waterloo Moraine aquifer system as an example. It was found that the conventional approach produces irregular particle tracks that require judgment to interpret in a meaningful way, and it can raise questions that may affect the credibility of the capture zone delineation. As an alternative, the potentially powerful but little-used backward-in-time advective-dispersive transport approach was investigated. A key advantage of this approach is its capability to represent local heterogeneities through the dispersion term. The dispersion process has a natural smoothing effect that results in unambiguous capture zones without the need for interpretation, thus enhancing credibility. The question of capture zone validation is also addressed. The meaning of a three-dimensional capture zone is considered, and it is shown that a fully three-dimensional representation of the system is crucial for valid results. The distinction between the maximum extent capture zone and the surface capture zone is also explained. In the case of complex heterogeneous systems, advective particle tracking can be used as an initial screening tool, whereas the more realistic backward-transport modeling approach can be used for final capture-zone delineation.  相似文献   

14.
The role of hand calculations in ground water flow modeling   总被引:1,自引:0,他引:1  
Haitjema H 《Ground water》2006,44(6):786-791
Most ground water modeling courses focus on the use of computer models and pay little or no attention to traditional analytic solutions to ground water flow problems. This shift in education seems logical. Why waste time to learn about the method of images, or why study analytic solutions to one-dimensional or radial flow problems? Computer models solve much more realistic problems and offer sophisticated graphical output, such as contour plots of potentiometric levels and ground water path lines. However, analytic solutions to elementary ground water flow problems do have something to offer over computer models: insight. For instance, an analytic one-dimensional or radial flow solution, in terms of a mathematical expression, may reveal which parameters affect the success of calibrating a computer model and what to expect when changing parameter values. Similarly, solutions for periodic forcing of one-dimensional or radial flow systems have resulted in a simple decision criterion to assess whether or not transient flow modeling is needed. Basic water balance calculations may offer a useful check on computer-generated capture zones for wellhead protection or aquifer remediation. An easily calculated "characteristic leakage length" provides critical insight into surface water and ground water interactions and flow in multi-aquifer systems. The list goes on. Familiarity with elementary analytic solutions and the capability of performing some simple hand calculations can promote appropriate (computer) modeling techniques, avoids unnecessary complexity, improves reliability, and is likely to save time and money. Training in basic hand calculations should be an important part of the curriculum of ground water modeling courses.  相似文献   

15.
An exact, closed-form analytical solution is developed for calculating ground water transit times within Dupuit-type flow systems. The solution applies to steady-state, saturated flow through an unconfined, horizontal aquifer recharged by surface infiltration and discharging to a downgradient fixed-head boundary. The upgradient boundary can represent, using the same equation, a no-flow boundary or a fixed head. The approach is unique for calculating travel times because it makes no a priori assumptions regarding the limit of the water table rise with respect to the minimum saturated aquifer thickness. The computed travel times are verified against a numerical model, and examples are provided, which show that the predicted travel times can be on the order of nine times longer relative to existing analytical solutions.  相似文献   

16.
Abstract

An analytical solution is developed to delineate the capture zone of a pumping well in an aquifer with a regional flow perpendicular to a stream, assuming a leaky layer between the stream and the aquifer. Three different scenarios are considered for different pumping rates. At low pumping rates, the capture zone boundary will be completely contained in the aquifer. At medium pumping rates, the tip of the capture zone boundary will intrude into the leaky layer. Under these two scenarios, all the pumped water is supplied from the regional groundwater flow in the aquifer. At high pumping rates, however, the capture zone boundary intersects the stream and pumped water is supplied from both the aquifer and the stream. The two critical pumping rates which separate these three scenarios, as well as the proportion of pumped water from the stream and the aquifer, are determined for different hydraulic settings.

Editor D. Koutsoyiannis; Associate editor A. Koussis

Citation Asadi-Aghbolaghi, M., Rakhshandehroo, G.R., and Kompani-Zare, M., 2013. An analytical approach to capture zone delineation for a well near a stream with a leaky layer. Hydrological Sciences Journal, 58 (8), 1813–1823.  相似文献   

17.
A Laplace-transform analytic element method (LT-AEM) is described for the solution of transient flow problems in porous media. Following Laplace transformation of the original flow problem, the analytic element method (AEM) is used to solve the resultant time-independent modified Helmholtz equation, and the solution is inverted numerically back into the time domain. The solution is entirely general, retaining the mathematical elegance and computational efficiency of the AEM while being amenable to parallel computation. It is especially well suited for problems in which a solution is required at a limited number of points in space–time, and for problems involving materials with sharply contrasting hydraulic properties. We illustrate the LT-AEM on transient flow through a uniform confined aquifer with a circular inclusion of contrasting hydraulic conductivity and specific storage. Our results compare well with published analytical solutions in the special case of radial flow.  相似文献   

18.
Groundwater contaminant transport processes are usually simulated by the finite difference (FDM) or finite element methods (FEM). However, they are susceptible to numerical dispersion for advection‐dominated transport. In this study, a numerical dispersion‐free coupled flow and transport model is developed by combining the analytic element method (AEM) with random walk particle tracking (RWPT). As AEM produces continuous velocity distribution over the entire aquifer domain, it is more suitable for RWPT than FDM/finite element methods. Using the AEM solutions, RWPT tracks all the particles in a vectorized manner, thereby improving the computational efficiency. The present model performs a convolution integral of the response of an impulse contaminant injection to generate concentration distributions due to a permanent contaminant source. The RWPT model is validated with an available analytical solution and compared to an FDM solution, the RWPT model more accurately replicates the analytical solution. Further, the coupled AEM‐RWPT model has been applied to simulate the flow and transport in hypothetical and field aquifer problems. The results are compared with the FDM solutions and found to be satisfactory. The results demonstrate the efficacy of the proposed method.  相似文献   

19.
Steady interface flow in heterogeneous aquifer systems is simulated with single‐density groundwater codes by using transformed values for the hydraulic conductivity and thickness of the aquifers and aquitards. For example, unconfined interface flow may be simulated with a transformed model by setting the base of the aquifer to sea level and by multiplying the hydraulic conductivity with 41 (for sea water density of 1025 kg/m3). Similar transformations are derived for unconfined interface flow with a finite aquifer base and for confined multi‐aquifer interface flow. The head and flow distribution are identical in the transformed and original model domains. The location of the interface is obtained through application of the Ghyben‐Herzberg formula. The transformed problem may be solved with a single‐density code that is able to simulate unconfined flow where the saturated thickness is a linear function of the head and, depending on the boundary conditions, the code needs to be able to simulate dry cells where the saturated thickness is zero. For multi‐aquifer interface flow, an additional requirement is that the code must be able to handle vertical leakage in situations where flow in an aquifer is unconfined while there is also flow in the aquifer directly above it. Specific examples and limitations are discussed for the application of the approach with MODFLOW. Comparisons between exact interface flow solutions and MODFLOW solutions of the transformed model domain show good agreement. The presented approach is an efficient alternative to running transient sea water intrusion models until steady state is reached.  相似文献   

20.
Writing Analytic Element Programs in Python   总被引:1,自引:0,他引:1  
The analytic element method is a mesh-free approach for modeling ground water flow at both the local and the regional scale. With the advent of the Python object-oriented programming language, it has become relatively easy to write analytic element programs. In this article, an introduction is given of the basic principles of the analytic element method and of the Python programming language. A simple, yet flexible, object-oriented design is presented for analytic element codes using multiple inheritance. New types of analytic elements may be added without the need for any changes in the existing part of the code. The presented code may be used to model flow to wells (with either a specified discharge or drawdown) and streams (with a specified head). The code may be extended by any hydrogeologist with a healthy appetite for writing computer code to solve more complicated ground water flow problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号