首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
对于足点被日面边缘遮挡住的耀斑的观测研究是诊断日冕硬X射线辐射的一个重要方法.通过统计分析RHESSI (Reuven Ramaty High-Energy Solar Spectroscopic Imager)卫星观测到的71个此类耀斑硬X射线源发现,前人提出的两类源,即日冕X射线辐射中热辐射与非热辐射源区空间分离较小的源和分离较大的源,在能谱、成像、光变曲线以及GOES持续时间等方面都没有显著的区别,其中辐射区的面积、耀斑总热能以及GOES持续时间与分离距离之间有很好的相关性.这些结果支持近年来提出的一些耀斑统一模型.同时也表明Masuda耀斑只是一类非常特殊的事件,不具有日冕硬X射线辐射的一般特征.  相似文献   

2.
Periodicities of 22, 8 and 6 years have been found by a statistical analysis of the coefficient of atmospheric activity R of Jupiter for the time period 1910–1985.We have also found variations of the coefficient of asymmetry of the activity Z measured by the Observatory of Athens for the time period 1956–1985 with periodicities of 12, 8, 6 and 4 years by statistical analysis.The same periodicities have been recently found in an analysis of the total number of solar flares and in the number of high velocity solar wind streamers.  相似文献   

3.
Application of analyzing time-series into trigonometric series allows the investigation of cosmic-ray intensity variations in a wide periodicity range from a few months to 10 or even more years. By this technique, the amplitude and the phase of all observed fluctuations can be given. For this purpose, cosmic-ray data of five ground-based neutron-monitor stations for the time interval 1964–1985 have been analyzed.Two kinds of periodicities appeared in these data. The first one includes occurrences at periods greater than two years, as the ones of 10.41, 8.41, and 5.50 yr, which differ very little in amplitude from station to station but are similar in phase, and the second one includes periodicities smaller than two years (24, 12, 8, and 6 months) which are similar in all stations but appeared in variable time intervals.The possible origin of each observed variation due to a contribution either of cosmic-ray interaction in the upper atmosphere or to the solar dynamics is discussed.  相似文献   

4.
The known Rieger periodicity (ranging in literature from 150 up to 160 d) is obvious in numerous solar indices. Many subharmonic periodicities have also been observed (128-, 102-, 78- and 51-d) in flare, sunspot, radio bursts, neutrino flux and flow data, coined as Rieger-type periodicities (RTPs). Several attempts are focused to the discovery of their source, as well as the explanation of some intrinsic attributes that they present, such as their connection to extremely active flares, their temporal intermittency as well as their tendency to occur near solar maxima. In this paper, we link the X-ray flare observations made on Geosynchronous Operational Environmental Satellites (GOES) to the already existing theoretical Lou model, suggesting that the mechanism behind the RTPs is the Rossby-type waves. The enhanced data analysis methods used in this article (Scargle–Lomb periodogram and Weighted Wavelet Z-Transform) provide the proper resolution needed to argue that RTPs are present also in less energetic flares, contrary to what has been inferred from observations so far.  相似文献   

5.
Short time periodicities of 3, 6, and 12 months have been found by analysis of the coefficient of atmospheric activity of Jupiter for the time period 1963–1967.These periodicities have been attributed to seasonal variations of the Jovian atmosphere, and could be related to similar periodicities observed in solar flares and in the high velocity solar wind streamers.  相似文献   

6.
S. D. Bouwer 《Solar physics》1992,142(2):365-389
Using a dynamic power spectral analysis technique, the time-varying nature of solar periodicities is investigated for background X-ray flux, 10.7 cm flux, several indices to UV chromospheric flux, total solar irradiance, projected sunspot areas, and a sunspot blocking function. Many prior studies by a host of authors have differed over a wide range on solar periodicities. This investigation was designed to help resolve the differences by examining how periodicities change over time, and how the power spectra of solar data depend on the layer of the solar atmosphere. Using contour diagrams that show the percent of total power over time for periods ranging from 8 to 400 days, the transitory nature of solar periodicities is demonstrated, including periods at 12–14, 26–28, 51–52, and approximately 154 days. Results indicate that indices related to strong magnetic fields show the greatest variation in the number of periodicities, seldom persist for more than three solar rotations, and are highly variable in their frequency and amplitude. Periodicities found in the chromospheric indices are fewer, persist for up to 8–12 solar rotations, and are more stable in their frequency and amplitude. An additional result, found in all indices to varying degrees and related to the combined effects of solar rotation and active region evolution, is the fashion in which periodicities vary from about 20 to 36 days. I conclude that the solar data examined here are both quasi-periodic and quasistationary, with chromospheric indices showing the longest intervals of stationarity, and data representing strong magnetic fields showing the least stationarity. These results may have important implications to the results of linear statistical analysis techniques that assume stationarity, and in the interpretation of time series studies of solar variability.  相似文献   

7.
Near solar maximum, hard X-ray microflares with peak 20 keV fluxes of 10–2 (cm2 s keV)–1, more than ten times smaller than for typical flares and subflares, can occur at the rate of about once every five minutes. We report here on a search for hard X-ray microflares made on a long duration balloon flight in February 1987 near solar minimum, at a time when no active regions were on the Sun. No microflares were observed over a total observing time of 16.5 hours spread over three days, implying a statistical upper limit to their rate of occurrence about a factor often lower than observed near solar maximum. Thus hard X-ray microflaring appears to be an active region phenomenon, and apparently not associated with flaring of soft X-ray bright points.  相似文献   

8.
The flattening at the low energy end of the hard X-ray (HXR) photon spectrum of solar flares was generally thought to be due to a cutoff of nonthermal electrons in flares. However, some authors have suggested that inverse Compton scattering (i.e., the albedo effect) or certain other reaction of flare photons with the lower atmosphere can also lead to the flattening. This paper adopts the method of deriving the cutoff proposed by Gan et al. [12–14], and makes a statistical analysis on 100 flares observed by the satellite Ramaty High Energy Solar Spectroscopy Imager (RHESSI) in 2002–2005. We found that after the albedo correction, the HXR photon spectra of 18 flares can be fitted with single powerlaw spectra, and those of 80 flares, with double power-law spectra. Besides, 21 flares can be directly interpreted with a single power-law electron spectrum plus a low energy cutoff. The range of the low energy cutoff is 20–50 keV and the mean value is approximately 30 keV. Some other possible interpretations are also investigated.  相似文献   

9.
Solar hard X-ray bursts   总被引:3,自引:0,他引:3  
Brian R. Dennis 《Solar physics》1985,100(1-2):465-490
The major results from SMM are presented as they relate to our understanding of the energy release and particle transportation processes that lead to the high-energy X-ray aspects of solar flares. Evidence is reviewed for a 152–158 day periodicity in various aspects of solar activity including the rate of occurrence of hard X-ray and gamma-ray flares. The statistical properties of over 7000 hard X-ray flares detected with the Hard X-Ray Burst Spectrometer are presented including the spectrum of peak rates and the distribution of the photon number spectrum. A flare classification scheme introduced by Tanaka is used to divide flares into three different types. Type A flares have purely thermal, compact sources with very steep hard X-ray spectra. Type B flares are impulsive bursts which show double footpoints in hard X-rays, and soft-hard-soft spectral evolution. Type C flares have gradually varying hard X-ray and microwave fluxes from high altitudes and show hardening of the X-ray spectrum through the peak and on the decay. SMM data are presented for examples of type B and type C events. New results are presented showing coincident hard X-rays, O v, and UV continuum observations in type B events with a time resolution of 128 ms. The subsecond variations in the hard X-ray flux during 10% of the stronger events are discussed and the fastest observed variation in a time of 20 ms is presented. The properties of type C flares are presented as determined primarily from the non-imaged hard X-ray and microwave spectral data. A model based on the association of type C flares and coronal mass ejections is presented to explain many of the characteristics of these gradual flares.  相似文献   

10.
Cosmic-ray intensity data for the period 1964–1985 covering two solar cycles are used to investigate the solar activity behaviour in relation to cosmic-ray modulation. A detailed statistical analysis of them shows a large time-lag of about one and half years between cosmic-ray intensity and solar activity (as indicated by sunspot number, solar flares and high-speed solar-wind streams) during the 21st solar cycle appearing for a first time. This lag indicates the very high activity level of this solar cycle estimating the size of the modulating region to the unambiguous value of 180 AU. The account of the solar-wind speed in the 11-year variation significantly decreases the modulation region of cosmic-rays to the value of 40 AU.A comparison with the behaviour of the previous solar cycle establishes a distinction between even and odd solar cycles. This is explained in terms of different contributions of drift, convection and diffusion to the whole modulation mechanism during even and odd solar cycles.  相似文献   

11.
The correlation between the long-term intensity variations of cosmic rays at neutron monitor energies and the LDE index measure of solar flares with long-lasting soft X-ray emissions is reported. Three subsequent solar cycles, 20–22, are taken into account and half-monthly data are analyzed. Possible explanation of this correlation is discussed in terms of the recent concepts of cosmic-ray modulation, in particular with merged interaction regions affecting the cosmic-ray intensity.  相似文献   

12.
近年来对太阳耀斑的研究取得了重要的进展。一些新的发现主要来自高分辨率的观测,特别是来自"阳光"卫星的结果。综述的范围包括太阳耀斑中磁重联的新证据、硬X射线源(包括所谓的超热源)的分类、X射线喷流的发现、环-环相互作用的证据以及对耀斑大气动力学过程的新认识等。基于这些新的知识,讨论了有关耀斑模型的一些问题。  相似文献   

13.
A Monte Carlo technique has been used to predict the relative visibility of solar hard X-ray flares as a function of solar longitude assuming the model of Takakura and Kai to be realistic. Comparison is made with previous statistical studies of observations. A discernable longitudinal variation in the relative visibility of flares is shown to be expected but the probability of flares being visible towards the limb is shown to be higher than had previously been evident.The effect of the possible downward inclination of the particle beam with respect to the solar surface is considered.  相似文献   

14.
ASO-S卫星HXI量能器探测单元的标定   总被引:1,自引:0,他引:1       下载免费PDF全文
先进天基太阳天文台卫星(Advanced Space-based Solar Observatory, ASO-S)是中国科学院第2批空间科学先导专项之一,其主要目标是同时观测太阳磁场、耀斑和日冕物质抛射,并对3者之间的相互关系和内在联系进行研究.硬X射线成像仪(HXI)是ASOS卫星的3大载荷之一,它通过对太阳活动发射的硬X射线进行傅里叶调制成像,实现高空间分辨率和高时间分辨率的太阳能谱成像观测.量能器单机是HXI的关键单机之一,其主要任务是精准测量通过每对光栅后太阳硬X射线的能量和通量.主要介绍了量能器单机的工作原理及其关键指标要求、标定设备及标定方案,最后给出了标定结果,从而验证了量能器单机方案设计的合理性.  相似文献   

15.
In order to investigate the relationship between magnetic-flux emergence, solar flares, and coronal mass ejections (CMEs), we study the periodicity in the time series of these quantities. It has been known that solar flares, sunspot area, and photospheric magnetic flux have a dominant periodicity of about 155 days, which is confined to a part of the phase of the solar cycle. These periodicities occur at different phases of the solar cycle during successive phases. We present a time-series analysis of sunspot area, flare and CME occurrence during Cycle 23 and the rising phase of Cycle 24 from 1996 to 2011. We find that the flux emergence, represented by sunspot area, has multiple periodicities. Flares and CMEs, however, do not occur with the same period as the flux emergence. Using the results of this study, we discuss the possible activity sources producing emerging flux.  相似文献   

16.
During the second interval of the Study of Travelling Interplanetary Phenomena (STIP, 20 March–5 May, 1976) a series of solar, interplanetary, geomagnetic and cosmic-ray events have occurred. These are surprising events, since this period falls into the minimum of the solar activity of the past solar cycle. The present analysis is concentrated on Forbush decreases, cosmic-ray increases, geomagnetic variations and the related solar wind disturbances recorded by the heliocentric satellites Helios-1, 2 and the geocentric IMP-8, in the period 23 March–7 April, 1976. The cosmic-ray enhancements on 26 March and 1 April were of geomagnetic origin and particularly expressed in middle latitude stations during the largeDst magnetic field depressions. The detected multiple Forbush decreases are related with the type IV solar flares, all produced by the same active region (McMath Plage 14143). The relative positions among the satellites Helios-1, 2, the Sun, and the Earth were very favorable in this period for studying these events, since Helios-1 approached the Sun to its perihelion and Helios-2 was lined-up with the Earth. Helios-2 detected two shock fronts on 30 March and 1 April, respectively, and Helios-1 detected a tangential discontinuity on 26 March. An attempt is made to relate these shock fronts with the erupted solar flares and Storm Sudden Commencements (SSC) recorded on the Earth and to estimate a lower limit of the deceleration distance of the involved shock waves.  相似文献   

17.
Intermediate-term periodicities in solar activity   总被引:2,自引:0,他引:2  
The presence of intermediate-term periodicities in solar activity, at approximately 323 and 540 days, has been claimed by different authors. In this paper, we have performed a search for them in the historical records of two main indices of solar activity, namely, the daily sunspot areas (cycles 12–21) and the daily Zürich sunspot number (cycles 6–21). Two different methods to compute power spectra have been used, one of them being especially appropriate to deal with gapped time series. The results obtained for the periodicity near 323 days indicate that it has only been present in cycle 21, while in previous cycles no significant evidence for it has been found. On the other hand, a significant periodicity at 350 days is found in sunspot areas and Zürich sunspot number during cycles 12–21 considered all together, also having been detected in some individual cycles. However, this last periodicity must be looked into with care due to the lack of confirmation for it coming from other features of solar activity. The periodicity around 540 days is found in cycles 12, 14, and 17 in sunspot areas, while during cycles 18 and 19 it is present, with a very high significance, in sunspot areas and Zürich sunspot number. It also appears at 528 days in sunspot areas during cycles 12–21. On the other hand, it is important to note the coincidence between the asymmetry, favouring the northern hemisphere, of sunspot areas and solar flares during cycle 19, and the fact that the periodicity at 540 days was only present, with high significance, in that hemisphere during that solar cycle.  相似文献   

18.
High-speed solar wind streams (HSWS) were identified for solar cycles 22 and 23 (up to 2004). Preliminarily, HSWS were classified in three groups according to their continuous period of occurrence. In the declining phase of solar cycle 23, 2003 is found to be anomalous, showing a very large number of HSWS events of long duration (> ten days). We have studied the effect of HSWS on the cosmic-ray intensity as well as their relationship with geomagnetic disturbance index Ap on yearly, daily, and hourly bases. The yearly average of solar-wind speed was also found to be maximum in 2003. Being within the declining phase of solar activity, the occurrence of solar flares in 2003 is quite low. In particular during HSWS, no solar flares have been observed. Associations with cosmic-ray changes do not support the notion that the HSWS are usually effective in producing significant cosmic-ray decreases. Out of 12 HSWS events observed during the period 2002 (December) to 2003, four events of significant cosmic-ray decreases at all the stations have been selected for further analysis. The cosmic-ray intensity has been found to decrease during the first phase of the event (first five days of HSWS) at all three neutron-monitor stations situated at different latitudes with different cutoff rigidities. The rigidity spectra of observed decreases in cosmic-ray intensity for these four cases have been found to be significantly different than that of Fds (Forbush decrease). In two cases the spectra are softer, whereas in the other two they are harder than that of Fds. However, if the average of all four events is considered together then the spectra of the decrease in cosmic rays during HSWS exactly match that of Fds. Such a result implies that initially individual events should be considered, instead of combining them together, as was done earlier. The Ap index is also found to generally increase in the first phase of the event. However, the four events selected on the basis of cosmic-ray decrease are not always associated with enhanced values of the Ap index. As such, the significance of our study is that further detailed investigations for much longer periods and on an event-by-event basis is required to understand the effect of coronal-hole-associated HSWS.  相似文献   

19.
Short-term periodicities of solar activity were studied with the flare index by using Discrete Fourier Transform for the time interval 1966–1986. Two noticeable periodicities (18.5 and 5 months) have been found. The existence of these periodicities comparing with the early findings is discussed.  相似文献   

20.
We study the propagation of solar wind disturbances caused by single, double and six successive flares in the dipolar and quadrupolar patterns of the interplanetary magnetic field (IMF) and the associated solar wind flow. This study is based on a kinematic and empirical method developed by Hakamada and Akasofu (1982). Each flare is characterized by six parameters (such as the highest speed flow, its extent and duration). The successive IMF patterns in the equatorial plane of the heliosphere during a time span of 0.5–60 days after flares are presented for a variety of flares. The solar wind speed and IMF magnitude are also given as a function of distance along a radial line fixed in space and also as a function of time at several points fixed in space (simulating approximately space probe observations). Some of the results are qualitatively compared with recent space probe observations, demonstrating fair similarity with the observed time profiles of solar wind speed variations over a wide range of both distances (0–10 a.u.) and time spans (60 days). Our method provides a first order construction, temporal and spatial, of flare-induced shocks and their multiple interactions with each other, as well as with the corotating interaction regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号